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C. Gómez, M. Ruiz-Altaba and G. Sierra Quantum Groups in Two-Dimensional Physics†

M. B. Green, J. H. Schwarz and E. Witten Superstring Theory Volume 1: Introduction
M. B. Green, J. H. Schwarz and E. Witten Superstring Theory Volume 2: Loop Amplitudes,

Anomalies and Phenomenology

V. N. Gribov The Theory of Complex Angular Momenta: Gribov Lectures on Theoretical Physics†
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Introduction

Why Tensor-Valued Random Fields in Continuum Physics?

In this book, we use the term continuum physics to refer to continuum mechanics
and other classical (non-quantum, non-relativistic) field-theoretic models such as
continuum thermomechanics (e.g. thermal conductivity, thermoelasticity, ther-
modiffusion), electromagnetism and electromagnetic interactions in deformable
media (e.g. piezoelectricity). Most tensor-valued (or, in what follows, just ‘ten-
sor’) fields appearing in these models fall into one of two categories: fields of
dependent quantities (displacement, velocity, deformation, rotation, stress. . . )
or fields of constitutive responses (conductivity, stiffness, permeability. . . ). All
of these fields take values in linear spaces of tensors of first or higher rank over
the space Rd, d = 2, 3 and, generally, of random nature (i.e. displaying spatially
inhomogeneous, random character), indicating that the well-developed theory of
scalar random fields has to be generalised to tensor random fields (TRFs).

In deterministic theories of continuum physics we typically have an equation
of the form

Lu = f ,

defined on some subset D of the d-dimensional affine Euclidean space Ed, where L
is a differential operator, f is a source or forcing function, and u is a solution field.
This needs to be accompanied by appropriate boundary and/or initial conditions.
(We use the symbolic (u) or, equivalently, the subscript (ui...) notations for
tensors, as the need arises; also, an overdot will mean the derivative with respect
to time, d/dt.)

A field theory is stochastic if either the operator L is random, or there appears
an apparent randomness of u due to an inherent non-linearity of L, or the forcing
and/or boundary/initial conditions are random. While various combinations of
these basic cases are possible, in this book we focus on the first and second cases.

The first case is typically due to the presence of a spatially random material
microstructure; see Ostoja-Starzewski (2008). For example, the coefficients of
L (ω), such as the elastic moduli C, form a tensor-valued random field, and the
stochastic equation

L (ω) u = f
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governs the response of a random medium B, that is, the set of possible states
of a deterministic medium.

The second case is exemplified by solutions of the Navier–Stokes equation,
which becomes so irregular as to be treated in a stochastic way (Batchelor 1951;
Monin & Yaglom 2007a; Monin & Yaglom 2007b; Frisch 1995). In both cases, B
is taken as a set of all the realisations B (ω) parameterised by elementary events
ω of the Ω space

B = {B (ω) : ω ∈ Ω } . (0.1)

In principle, each of the realisations follows deterministic laws of classical
mechanics; probability is introduced to deal with the set (0.1). The ensemble
picture is termed stochastic continuum physics. Formally speaking, we have a
triple (Ω,F,P), where Ω is the set of elementary events, F is its σ-field and P is
the probability measure defined on it.

Besides turbulence, another early field of research where stochastic continuum
physics replaced the deterministic picture has been stochastic wave propagation:
elastic, acoustic and electromagnetic. A paradigm of wave propagation in random
media is offered by the wave equation for a scalar field u in a domain D:

∇2ϕ =
1

c2 (ω,x)
∂2ϕ

∂t2
, ω ∈ Ω, x ∈ D.

Here c is the wave speed in a linear elastic, isotropic medium, so that, effectively,
B is described by a random field { c(ω,x) : ω ∈ Ω,x ∈ D }. Given that we
simply have a Laplacian on the left-hand side, this model accounts for spatial
randomness in mass density ρ only.

In order also to account for randomness in the elastic modulus E, we should
consider this partial differential equation:

∇ · [E (ω,x)∇u] = ρ (ω,x)
∂2u

∂t2
, ω ∈ Ω, x ∈ D. (0.2)

Clearly, we are now dealing with two scalar random fields: E and ρ. This
model’s drawback, however, is the assumption of an inhomogeneous but locally
isotropic second-rank stiffness (or elasticity) tensor field E = EI instead of E
(= Eijei⊗ej) with full anisotropy. In fact, extensive studies on upscaling of var-
ious mechanical and physical phenomena have shown (Ostoja-Starzewski et al.
2016) that the local anisotropy goes hand in hand with randomness: as the
smoothing scale (i.e. scale on which the continuum is set up) increases, the
anisotropy and random fluctuations in material properties jointly go to zero.
Thus, Equation (0.2) should be replaced by

∇ · [E (ω,x) · ∇u] = ρ (ω,x)
∂2u

∂t2
, ω ∈ Ω, x ∈ D.

The same arguments apply to a diffusion equation of, say, heat conduction

∇ · [K (ω,x) · ∇T ] = c (ω,x) ρ (ω,x)
∂T

∂t
, ω ∈ Ω, x ∈ D,
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Figure 0.1 (a) A realisation of a Voronoi tesselation (or mosaic); (b) placing
a mesoscale window leads, via upscaling, to a mesoscale random contin-
uum approximation in (c). Reproduced from Malyarenko & Ostoja-Starzewski
(2017b).

in which K is the thermal conductivity tensor (again with anisotropy present),
while the specific heat c and mass density ρ jointly premultiply the first derivative
of temperature T on the right-hand side.

This line of reasoning also applies to elliptic problems: consider Figure 0.1,
showing a planar Voronoi tessellation of E2 which serves as a planar geometric
model of a polycrystal (although the same arguments apply in E3). Each cell
may be occupied by a differently oriented crystal, with all the crystals belonging
to any specific crystal class. The latter include:

● transverse isotropy modelling, say, sedimentary rocks at long wavelengths;
● tetragonal modelling, say, wulfenite (PbMoO4);
● trigonal modelling, say, dolomite (CaMg(CO3)2);
● orthotropic modelling, say, wood;
● triclinic modelling, say, microcline feldspar.

Thus, we need to be able to model fourth-rank tensor random fields, point-wise
taking values in any crystal class. While the crystal orientations from grain to
grain are random, they are not spatially independent of each other – the assign-
ment of crystal properties over the tessellation is not white noise. This is precisely
where the two-point characterisation of the random field of elasticity tensor is
needed. While the simplest correlation structure to admit would be white noise,
a (much) more realistic model would account for any mathematically admissible
correlation structures as dictated by the statistically wide-sense homogeneous
and isotropic assumption. A specific correlation can then be fitted to physical
measurements.

Note that it may also be of interest to work with a mesoscale random con-
tinuum approximation defined by placing a mesoscale window at any spatial
position, as shown in Figure 0.1(b). Clearly, the larger the mesoscale window,
the weaker the random fluctuations in the mesoscale elasticity tensor: this is
the trend to homogenise the material when upscaling from a statistical volume
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element (SVE) to a representative volume element (RVE). A simple paradigm
of this upscaling, albeit only in terms of a scalar random field, is the opacity
of a sheet of paper held against light: the further away the sheet is from our
eyes, the more homogeneous it appears. Similarly, in the case of upscaling of
elastic properties, on any finite scale there is almost certainly anisotropy, and
this anisotropy, with mesoscale increasing, tends to zero hand-in-hand with the
fluctuations, and it is in the infinite mesoscale limit (i.e. RVE) that material
isotropy is obtained as a consequence of the statistical isotropy.

Another motivation for the development of TRF models is to have a realistic
input of elasticity random fields into stochastic field equations such as stochastic
partial differential equations (SPDE) and stochastic finite elements (SFE). The
classical paradigm of SPDE can be written in terms of the anti-plane elastostatics
(with u ≡ u3):

∇ · (C (x, ω)∇u) = 0, x ∈ E2, ω ∈ Ω, (0.3)

with C (·, ω) being spatial realisations of a scalar RF. In view of the foregoing
discussion, Equation (0.3) is well justified for a piecewise-constant description
of realisations of a random medium such as a multiphase composite made of
locally isotropic grains. However, in the case of a boundary value problem set up
on coarser (i.e. mesoscale) scales, having continuous realisations of properties, a
second-rank tensor random field (TRF) of material properties would be much
more appropriate: see Figure 0.1(b). The field equation should then read

∇ · (C (x, ω) · ∇u) = 0, x ∈ E2, ω ∈ Ω,

where C is the second-rank tensor random field.
Moving to the in-plane or 3D elasticity, the starting point is the Navier

equation of motion (written in symbolic and tensor notations):

μ∇2u+ (λ+ μ) ∇ (∇ · u) = ρü or μui,jj + (λ+ μ)uj ,ji = ρüi. (0.4)

Here u is the displacement field, λ and μ are two Lamé constants and ρ is the
mass density. This equation is often (e.g. in stochastic wave propagation) used
as an Ansatz, typically with the pair (λ, μ) taken ad hoc as a ‘vector’ random
field with some simple correlation structure for both components. However, in
order to properly introduce the smooth randomness in λ and μ, one has to go
one step back in derivation of (0.4) and write

μ∇2u+ (λ+ μ) ∇ (∇ · u) + ∇μ
(
∇u+ (∇u)�

)
+ ∇λ∇ · u = ρü,

or

μui,jj + (λ+ μ)uj ,ji +μ,j (uj ,i +ui,j ) + λ,i uj ,j = ρüi. (0.5)

While two extra terms are now correctly present on the left-hand side, this equa-
tion still suffers from the drawback (just as did Equation (0.3)) of local isotropy
so that, again by micromechanics upscaling arguments, should be replaced by
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∇ · (C∇ · u)� = ρü or
(
Cijklu(k,l)

)
,j = ρüi. (0.6)

Here C (= Cijklei ⊗ ej ⊗ ek ⊗ el), which, at any scale finitely larger than
the microstructural scale, is almost surely (a.s.) anisotropic. Clearly, instead
of Equation (0.5) one should work with this SPDE (0.6) for u.

The foregoing arguments motivate the main goal of this book: to obtain explicit
representations of correlation functions of TRFs of ranks 1 through 4, so as to
enable their simulation and the construction of models of various field phenom-
ena, subject to the restrictions imposed by the field equations dictated by physics.
Briefly, in the case of dependent TRFs, we have, say, the linear momentum equa-
tion restricting the Cauchy stress or the angular momentum equation restricting
the Cauchy and couple stresses. In the case of material property fields (elas-
ticity, diffusion, permeability . . . ) there are conditions of positiveness of either
the energy density or the entropy production, as the case may be. In turn, any
such conditions lead to restrictions on the respective correlation functions. An
introduction to a wide range of continuum physics theories where tensor random
fields are needed is given in Chapter 1.

What Mathematical Background is Required?

Random functions of more than one real variable, or random fields, appeared for
the very first time in applied physical papers. We would like to mention papers
by Friedmann & Keller (1924), von Kármán (1937), von Kármán & Howarth
(1938), Kampé de Fériet (1939), Obukhov (1941a), Obukhov (1941b), Robertson
(1940), Yaglom (1948), Yaglom (1957), Lomakin (1964) and Lomakin (1965).
The physical models introduced in the above papers follow the same scheme,
which we explain below. The mathematical tools we use are described in detail
in Chapter 2; see also Olive & Auffray (2013) and Auffray, Kolev & Petitot
(2014).

Let (E,Rd,+) be the d-dimensional affine space. The underlying linear space
V = Rd consists of vectors x = (x1, . . . , xd)�. We are mainly interested in the
case of d = 2, which corresponds to plane problems of continuum physics as
well as in the case of d = 3 that corresponds to space problems. Let (·, ·) be the
standard inner product in Rd:

(x,y) =
d∑
i=1

xiyi.

Let r be a non-negative integer. The above inner product induces inner products
in the space V ⊗r as follows: (α, β) = αβ when r = 0 and α, β ∈ V ⊗0 = R1 and

(S,T ) =
d∑

j1=1

· · ·
d∑

jr=1

Sj1···jrTj1···jr .

The linear transformations of the space Rd that preserve the above inner
product, constitute the orthogonal group O(d). The pair (g⊗r, V ⊗r) is an
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orthogonal representation of the group O(d) (trivial when r = 0). Let V0 be an
invariant subspace of the above representation of positive dimension. Let ρ be the
restriction of the representation g �→ g⊗r of the group O(d) to the subspace V0.
Consider the representation (ρ,V0) as a group action. There are finitely many,
say N , orbit types for this action. Let [G0], . . . , [GN−1] be the corresponding
conjugacy classes of the closed subgroups of the group O(d). Physicists call them
symmetry classes. The representatives of conjugacy classes are point groups.

Let Gi be a representative of the conjugacy class [Gi]. Let V be the subspace
of V0 where the isotypic component of the representation ρ0 that corresponds
to the trivial representation of the group Gi acts. Let N(Gi) be the normaliser
of the group Gi in O(d). Let G be a subgroup of N(Gi) such that Gi is a
subgroup of G. Call G the symmetry group of a physical material, or the group of
material symmetries. The space V is an invariant subspace for the representation
(g⊗r, (Rd)⊗r) of the group G. Let ρ be the restriction of the above representation
to V.

Let B be a material body that occupies a subset D ⊂ Ed. Consider a physical
property of B that is described by a mapping T : D → V. Examples are given
in Subsection 3.1 and include the temperature, where V = R1, the velocity of
a turbulent fluid, where V = Rd, the strain tensor of a deformable body, where
V = S2(Rd), the space of symmetric matrices, and the elasticity (or stiffness)
tensor, where V = S2(S2(Rd)).

To randomise this model, consider a random field T : E → V. Assume that
E[‖T (A)‖2] < ∞, A ∈ E. Assume also that the field T (A) is mean-square
continuous, that is,

lim
‖B−A‖→0

E[‖T (B) − T (A)‖2] = 0

for all A ∈ E. Under the translation, the one-point correlation tensor

〈T (A)〉 = E[T (A)]

and the two-point correlation tensor

〈T (A),T (B)〉 = E[(T (A) − 〈T (A)〉) ⊗ (T (B) − 〈T (B)〉)]

do not change. Such a field is called wide-sense homogeneous.
Fix a place O ∈ D. Under the rotation of the body about O by a material

symmetry g ∈ G, an arbitrary place A ∈ D becomes the place O + g(A −
O). Evidently, the tensor T (A) becomes the tensor ρ(g)T (A). The one-point
correlation tensor of the transformed field must be equal to that of the original
field:

〈T (O + g(A−O))〉 = ρ(g)〈T (A)〉.

The two-point correlation tensors of both fields must be equal as well:

〈T (O + g(A−O)),T (O + g(B −O))〉 = (ρ⊗ ρ)(g)〈T (A),T (B)〉.
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A random field that satisfies the two last conditions is called wide-sense isotropic.
In what follows we omit the words ‘wide-sense’.

The main mathematical problem that is solved in this book is as follows. We
would like to find the general form of the one-point and two-point correlation
tensors of a homogeneous and isotropic tensor-valued random field T (A) as well
as the spectral expansion of the above field.

To explain what we mean, consider the simplest example. Let ρ be the trivial
representation of the symmetry group G = O(d), and let τ(A) be the correspond-
ing homogeneous and isotropic random field. Schoenberg (1938) proved that the
equation

〈τ(A), τ(B)〉 = 2(d−2)/2Γ (d/2)
∫ ∞

0

J(d−2)/2(λ‖B −A‖)
(λ‖B −A‖)(d−2)/2

dΦ(λ)

establishes a one-to-one correspondence between the set of two-point correlation
functions of homogeneous and isotropic random fields on the space E and the
set of finite Borel measures Φ on [0,∞). Here Γ denotes the gamma function
and J denotes the Bessel function of the first kind.

The paper by Schoenberg (1938) was not mentioned before. The reason is
that this paper does not treat random fields at all. Instead, the problem of
description of all continuous positive-definite functionsB(‖y−x‖) with x, y ∈ Rd

is considered. Thus, there exists a link between the theory of random fields and
the theory of positive-definite functions.

The result by Schoenberg (1938) does not help to perform a computer simula-
tion of sample paths of a homogeneous and isotropic random field. The following
result is useful for the above purposes. Yaglom (1961) and M. Ĭ. Yadrenko, in his
unpublished PhD thesis, proved that a homogeneous and isotropic random field
has the following spectral expansion:

τ(A−O) = 〈τ(A)〉 +
√

2d−1Γ (d/2)πd/2
∞∑
�=0

h(d,�)∑
m=1

Sm� (θ1, . . . , θd−2, ϕ)

×
∫ ∞

0

J�+(d−2)/2(λρ)
(λρ)(d−2)/2

dZm� (λ),

where (ρ, θ1, . . . , θd−2, ϕ) are the spherical coordinates of the vector A−O, Sm� are
real-valued spherical harmonics and Zm� is a sequence of uncorrelated real-valued
orthogonal stochastic measures on [0,∞) with the measure Φ as their common
control measure. To simulate the field, we truncate the integrals and use an
arbitrary quadrature formula in combination with Monte Carlo simulation.

As the reader can see, the spectral expansion of the field includes an arbitrary
choice of the place O ∈ E. There is nothing strange here, because the affine
space E does not contain any distinguished places. More explanation is given in
Section 2.9. To avoid frequent repetitions of the same words, we vectorise the
affine space E by a choice of the origin O ∈ E once and forever, and denote the
vector space EO by Rd.
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The next interesting case is when ρ(g) = g. Robertson (1940) proved that in
this case the two-point correlation matrix of the field has the form

〈v(x),v(y)〉ij = A(‖z‖)zizj +B(‖z‖)δij ,

where z = y − x. Note that δij is the only covariant tensor of degree 0 and of
order 2 of the group O(3), while zizj is its only covariant tensor of degree 2 and
of order 2. Thus, another link has been established, this time between the theory
of random fields and the classical invariant theory. A review of the invariant
theory is given in Section 2.7.

In Section 3.1 we continue to describe the results obtained by our predecessors.
As the reader will see, the list of results is impressively short. The complete
solution to the problem formulated above requires a combination of tools from
different areas of mathematics. No book that describes all necessary tools in a
short form is known to the authors. Therefore, in Chapter 2 we collected all of
them together. The choice of material was dictated by the solution strategy, and
we describe it below.

The main idea is quite simple; see Malyarenko (2013). We describe the set of
homogeneous random fields and reject those that are not isotropic. Trying this
way, we immediately meet the first obstacle: there exist no complete description
of two-point correlation tensors of homogeneous random fields taking values in
a real finite-dimensional linear space. The only known result is as follows. Let Ṽ

be a complex finite-dimensional linear space. The equation

〈T (x),T (y)〉 =
∫
V̂

ei(p,y−x) dF (p)

establishes a one-to-one correspondence between the set of Ṽ-valued homoge-
neous random fields on the space domain V and the set of measures F on the
Borel σ-field B(V̂ ) taking values in the set of Hermitian non-negative-definite
operators on Ṽ. Here V̂ denote the wavenumber domain.

Now we have to define a real subspace V of the complex space Ṽ. The easiest
way to do that is to introduce coordinates in Ṽ. We do not want to proceed this
way, however, for the following reason. The formulae that describe the solution
are basis-dependent. Therefore, the choice of the most convenient basis is a part
of the proof. The idea is to make the above choice at the latest possible stage of
proof: that is, to write as many formulae as possible in a coordinate-free form.

To start with, we introduce a real structure J in the space Ṽ. The eigenvectors
of J that correspond to the eigenvalue 1, form a real linear space V. The linear
space of all Hermitian operators on Ṽ is isomorphic to V⊗V = S2(V)⊕Λ2(V). Let
� be the linear operator in V⊗V for which S2(V) is the set of eigenvectors with
eigenvalue 1, and Λ2(V) is the set of eigenvectors with eigenvalue −1 (this is just
the coordinate-free definition of the transposed matrix). We have the following
necessary condition: if a homogeneous random field takes values in V, then the
measure F satisfies the reality condition:
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F (−A) = F (A)�, A ∈ B(V̂ ),

where −A = {−T : T ∈ A }. If one rejects away all Radon measures F that do
not satisfy the above condition, no V-valued homogeneous random fields are lost
(but some Ṽ-valued fields may still remain).

The above method dictates the content of Section 2.1, where we explain many
results of linear and tensor algebra in both coordinate and coordinate-free form.

Next, we prove that the one-point correlation tensor of an isotropic random
field is a tensor lying in the isotypic subspace of the representation ρ that
corresponds to its trivial component, while the measure F must satisfy the
condition

F (gA) = (ρ⊗ ρ)(g)F (A), A ∈ B(V̂ ).

The next idea is as follows. We find a group G̃ and its orthogonal representation
(ρ̃, Ṽ) in a real finite-dimensional space Ṽ such that the above condition and the
reality condition together are equivalent to the condition

F (A) ∈ Ṽ, F (g̃A) = ρ̃(g̃)F (A).

Lemma 1 solves this problem. Proof of Lemma 1 requires both general knowledge
of group representations and specific knowledge of orthogonal representations,
that are given in Section 2.5.

The next step is to introduce the measure μ(A) = trF (A), A ∈ B(V̂ ), noting
that F is absolutely continuous with respect to μ, and to write the two-point
correlation tensor of the field as

〈T (x),T (y)〉 =
∫
V̂

ei(p,y−x)f(p) dμ(p),

where the density f(p) is a measurable function on V̂ taking values in the convex
compact set of all Hermitian non-negative-definite operators on Ṽ with unit trace.
The measure μ and the density f(p) must satisfy the following conditions:

μ(g̃A) = μ(A), f(g̃p) = ρ̃(g̃)f(p).

The description of all possible measures μ is well known. It includes a detailed
description of the stratification of the space V̂ induced by the group action of
the group G by the matrix-vector multiplication. In particular, the measure μ
is uniquely determined by a Radon measure Φ on the Borel σ-field of the orbit
space V̂ /G̃. All necessary tools from topology are presented in Section 2.2.

To find all measurable functions f : V̂ → Ṽ satisfying the second condition,
we proceed as follows. Let [G̃0], . . . , [G̃M−1] be the symmetry classes of the
representation (g, V̂ ) of the group G̃, where [G̃0] is the minimal symmetry class,
and [G̃M−1] is the principal symmetry class. Let (V̂ /G̃)0, . . . , (V̂ /G̃)M−1 be the
corresponding stratification of the orbit space V̂ /G̃. For simplicity of notation,
assume that there is a chart λm of the manifold (V̂ /G̃)m that covers a dense
subset of the above manifold, and there is a chart ϕm of the orbit G̃/Hm that
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covers a dense subset of the orbit. Let (λm,ϕ0
m) be the coordinates of the inter-

section of the orbit G̃·λm with the set (V̂ /G̃)m. We have g̃(λm,ϕ0
m) = (λm,ϕ0

m)
for all g̃ ∈ Hm. It follows that

f(λm,ϕ0
m) = ρ̃(g̃)f(λ0,ϕ

0
m), g̃ ∈ Hm.

In other words, the tensor f(λm,ϕ0
m) lies in the isotypic subspace Wm of the

trivial component of the representation ρ̃ of the group Hm. The intersection of
the space Wm and the convex compact set of Hermitian non-negative-definite
operators in Ṽ is a convex compact set, say Cm. No other restriction exists; that
is, the restriction of f to (V̂ /G̃)m is an arbitrary measurable function taking
values in Cm.

Now we introduce coordinates. The space V consists of tensors of rank r.
Let T 1

i1···ir , . . . , T dim V
i1···ir be an orthonormal basis in V. The space V ⊗ V can

be represented as the direct sum of the subspace of symmetric tensors and the
subspace of skew-symmetric tensors over V:

V ⊗ V = S2(V) ⊕ Λ2(V).

Put τ(T 1 ⊕ T 2) = T 1 ⊕ iT 2, where T 1 ∈ S2(V), T 2 ∈ Λ2(V). The map τ is an
isomorphism between V ⊗ V and the real linear space H of Hermitian operators
on Ṽ. The coupled basis of the space H is formed by the tensors

τ(T ii1···ir ) ⊗ τ(T jj1···jr ), 1 ≤ i, j ≤ dim V,

while the mth uncoupled basis of the above space consists of the rank 2r tensors

T 0k
i1···jr , 1 ≤ k ≤ (dim V)2,

where the first dimWm tensors constitute an orthonormal basis in Wm.
Let (λm,ϕ0

m) be the coordinates of the intersection of the orbit G̃ · λm with
the set (V̂ /G̃)m. Let fki1···jr (λm,ϕ

0
m) be the value of the linear form f(λ0,ϕ

0
m)

on the basis tensor T 0k
i1···jr . Then we have fki1···jr (λ0,ϕ

0
m) = 0 when k > dim W0.

The value of the linear form f(λm,ϕm) on the above basis tensor is then

fki1···jr (λm,ϕm) =
dim W0∑
l=1

ρ̃0
kl(ϕm)f li1···jr (λm,ϕm),

where ρ̃0
kl(ϕm) = (ρ̃(g̃)T 0k

i1···jr ,T
0l
i1···jr ) are the matrix entries of the operator

ρ̃(g̃) in the zeroth uncoupled basis, with g̃ being an arbitrary element of G̃ that
transforms the point λm ∈ (V̂ /G̃)m to the point (λm,ϕm) ∈ V̂ .

The tensors of the coupled basis are linear combinations of the tensors of the
zeroth uncoupled basis:

τ(T ii1···ir ) ⊗ τ(T jj1···jr ) =
(dim W)2∑
k=1

cmkij T
0k
i1···jr ,
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and the matrix entries of the Hermitian non-negative-definite operator
f(λm,ϕm) in the coupled basis take the form

fi1···ir,j1···jr (λm,ϕm) =
(dim W)2∑
k=1

cmkij

dim W0∑
l=1

ρ̃0
kl(ϕm)f li1···jr (λm).

As we will see in Chapter 3, previous ideas lead to the expansion of the two-
point correlation tensor of the field into a sum of finitely many double integrals.
The inner integrals can be calculated in a closed form. The quickest way to
do that is to expand the plane wave ei(p,y−x) into a Fourier series (a Fourier
sum if the group G̃ is finite) with respect to the matrix entries of some special
irreducible orthogonal representations of the group G̃, and use a fundamental
theorem of the representation theory called the Fine Structure Theorem. Many
classical formulae of the theory of special functions, reviewed in Section 2.10, are
particular cases of the above expansion. For example, if G̃ contains two elements,
we obtain the de Moivre formula, if G̃ = O(2), we obtain the Jacobi–Anger
expansion, and so on.

Many properties of the fields’ spectral expansions are encoded in the geometry
of convex compacta Cm, 0 ≤ m ≤M−1. In particular, the number of integrals in
the expansion of the two-point correlation tensor of the field is equal to the num-
ber of connected components of the set of extreme points of C0. If a component is
not a one-point set, then the corresponding integrand contains an arbitrary mea-
surable function taking values in the closed convex hull of the component. The
integrals are calculated with respect to measures Φ that may satisfy additional
constraints. The eventual constraints are encoded in the configuration of the sets
Cm, 1 ≤ m ≤M − 1 inside C0, and so on. Section 2.8 introduces necessary tools
from geometry of finite-dimensional convex compacta.

The coefficients cmkij are expressed in terms of the so-called Clebsch–
Gordan coefficients of the real orthogonal irreducible representations of the
group G̃. Note that the classical Clebsch–Gordan coefficients familiar from
quantum mechanics are different. They are connected with complex unitary
irreducible representations of the group SU(2) of 2 × 2 unitary matrices with
unit determinant. Both the coupled and uncoupled bases must be chosen in
such a way that the calculation of the coefficients cnkij becomes as easy as
possible.

Finally, the expansion of the field in term of stochastic integrals is obtained
as follows. Write the plane wave in the form

ei(p,y−x) = ei(p,y)e−i(p,x)

and apply the Fourier expansion to each term separately. As a result, the two-
point correlation tensor of the field takes the form

〈T (x),T (y)〉 =
∫
Λ

h(x, λ)h(y, λ) dν(λ),
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where ν is a measure on a σ-field L of subsets of a set Λ taking values in the
set of Hermitian non-negative-definite linear operators on Ṽ. Moreover, the set
of functions {h(x, λ) : x ∈ Rd } is total in the Hilbert space L2(Λ, ν), that is,
its linear span is dense in the above space. Using the fundamental Karhunen’s
theorem, we write down the spectral expansion of the random field T (x) in the
form

T (x) = E[T (x)] +
∫
Λ

h(x, λ) dZ(λ),

where Z is a centred Ṽ-valued random measure with control measure ν, that is,

E[Z(A) ⊗ Z(B)] = ν(A ∩B), A,B ∈ L.

As we noticed before, the class of random fields we obtained still may contain
the fields taking values outside the space V. Such fields should be thrown away
separately in each case.

The mathematical tools introduced in Chapter 2 give us an opportunity to
solve the problem formulated above. In Section 3.1 we give the exact formulation
of the problem. Before going into technicalities, we consider a non-trivial example
which illustrates our methods, in Section 3.2. The general part of the proof is
presented in Section 3.3. In the following five sections we prove both existing
and new results using the above-described methods. Sections 3.4 to 3.8 describe
homogeneous and isotropic random fields of rank r, for values of r from 0 to 4
respectively.

In Chapter 4 we apply the mathematical theory to TRFs of dependent quan-
tities and constitutive responses. The topics include: a strategy for simulation of
TRFs of ranks 1–4, ergodicity of TRFs, consequences of field equations (in 2D
and 3D) for classical and micropolar continua, constitutive elastic-type responses,
applications to stochastic partial differential equations, stochastic damage phe-
nomena, isotropic but inhomogeneous TRFs modelling planetary rings and a
very short selection of future research directions.

Note that an alternative approach was elaborated by Guilleminot & Soize
(2011), Guilleminot, Noshadravan, Soize & Ghanem (2011), Guilleminot & Soize
(2012), Guilleminot & Soize (2013a), Guilleminot & Soize (2013b), Noshadra-
van, Ghanem, Guilleminot, Atodaria & Peralta (2013), Guilleminot, Le & Soize
(2013), Guilleminot & Soize (2014) and Staber & Guilleminot (2018). Using a
stochastic model alternative to our model, they constructed a generator for ran-
dom fields that have prescribed symmetry properties, take values in the set of
symmetric non-negative-definite tensors, depend on a few real parameters and
may be easily simulated and calibrated.
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Introduction to Continuum Theories

This chapter provides a simple introduction to a range of continuum theo-
ries where spatial randomness is very likely to go hand in hand with local
anisotropy. The introduction is simple because (i) a complete picture of con-
tinuum physics would be on the order of a thousand pages and (ii) we can
quickly make the case for stochastic continuum physics by going from classi-
cal (Cauchy-type) to micropolar (Cosserat-type) and then non-local theories. At
the same time, we introduce several single- and multi-field models: elastic, dissi-
pative (parabolic or hyperbolic), thermoelastic, viscothermoelastic, piezoelectric
and plasticity/damage phenomena. In order to see all these directions from one
common perspective, we employ thermomechanics with internal variables (TIV),
an approach which hinges on the free energy and dissipation functions. Treating
the free energy as stochastic corresponds to modelling a randomly inhomoge-
neous hyperelastic material. The dissipation function, while very well known
in deterministic continuum mechanics, can also be made stochastic – a useful
property for modelling macroscopic, say geological, media on macro scales. The
stochastic dissipation function also provides a link to nanoscale violations of the
Second Law of Thermodynamics, as studied in contemporary statistical physics.

1.1 Deterministic versus Stochastic Models

1.1.1 Elementary Considerations

Why random fields?

In this book we understand continuum physics to mean continuum mechanics
and other classical (non-quantum, non-relativistic) field theoretic models such as
continuum thermomechanics (e.g. thermal conductivity, thermoelasticity) and
multi-field interactions (e.g. piezoelectricity, thermodiffusion). In deterministic
theories of continuum physics we typically have an equation of the form

Lu = f , (1.1)
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defined on some subset D of the d-dimensional affine Euclidean space E = Ed,
where L is a differential operator, f is a source or forcing function and u is a
solution field. This needs to be accompanied by appropriate boundary and/or
initial conditions. (Hereinafter we interchangeably, whichever is more convenient,
use the symbolic (f ) and subscript (fi...) notations for tensors; an overdot means
the material time derivative.)

A field theory is stochastic if either the operator L is random, the forcing
function f is random or the boundary/initial conditions are random. In the vein
of the theory of random processes, this is indicated by the dependence on an
elementary event ω (an element of the sample space Ω) and, thus, we have:

● randomness of the operator:

L (ω) u = f ; (1.2)

● randomness of the forcing function:

Lu = f (ω) ;

● randomness of the boundary and/or initial conditions.

There is also a possibility of inherent non-linearity of L, such as in fluid
turbulence, leading to

● apparent randomness of u expressed by

Lu (ω) = f . (1.3)

While various combinations of these four basic cases are further possible,
this book is focused on u and f being tensor-valued random fields (TRFs) of
statistically homogeneous (i.e. wide-sense stationary) and isotropic type.

The first case is typically due to the presence of a spatially random material
microstructure, e.g. Ostoja-Starzewski (2008). For example, the coefficients of
L (ω), such as the elastic moduli C, form a tensor-valued random field (TRF),
and the stochastic equation (1.2) governs the response of a random medium B.
Note that a formal solution to (1.3) is〈

L−1
〉−1 〈u〉 = f . (1.4)

The operator
〈
L−1

〉−1 is generally unwieldy to obtain in an explicit form,
which explains the statistical averaging involved in writing a deterministic field
problem:

〈L〉 〈u〉 = f . (1.5)

Basically, this form directly averages the spatial randomness and is at the basis
of classical models of continuous media. It needs to be noted that the straight-
forward averaging of, say, elastic coefficients does not lead to correct elasticity
field equations of average responses.
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The second case may be viewed as a continuum generalisation of a random
vibration problem, itself a special case of a random dynamical system. Thus,
f (ω) may represent a realisation of a random force (or source) field applied to a
continuous body.

The third case is not very interesting as it can usually be handled through a
solution of the corresponding deterministic problem.

The fourth case (1.3) is exemplified by solutions of the Navier–Stokes equation,
which become so irregular as to be treated in a stochastic way (Batchelor 1951,
Monin & Yaglom 2007a, Monin & Yaglom 2007b, Frisch 1995). In both cases B
is taken as the set of all realisations B (ω) parametrised by elementary events ω
of the space Ω:

B = {B (ω) ;ω ∈ Ω} . (1.6)

In principle, each of the realisations follows deterministic laws of classical
mechanics; probability is introduced to deal with the set (1.6).

In all the cases, the ensemble picture is termed stochastic continuum physics.

Why tensor-valued random fields?

Besides turbulence, another early (and continuing) field of research where
stochastic continuum physics was found to be necessary has been stochastic wave
propagation, both acoustic and electromagnetic. The starting point in classical
analyses of wave propagation in random media is offered by the wave equation
for a scalar field u in a spatial domain D:

∇2u =
1

c2 (ω,x)
∂2u

∂t2
, ω ∈ Ω, x ∈ D. (1.7)

To be more specific, and without loss of generality in the discussion, we can
consider (1.7) to model the anti-plane elastic wave propagation in the (x1, x2)-
plane, so D ⊂ R2, while u ≡ u3 component of the displacement vector u = uiei
in three dimensions (3D). Here the phase velocity c is a random field, i.e. an
ensemble {c (ω,x) , ω ∈ Ω,x ∈ D}. Formally speaking, we have a triple (Ω,F,P),
where Ω is the space of elementary events, F is the σ-field of possible events and
P is the probability measure defined on it; ω is written explicitly to indicate the
random nature of any given quantity.

It is observed that Equation 1.7 stems from

∇2u =
ρ

E

∂2u

∂t2
, ω ∈ Ω, x ∈ D,

so, in principle, it can account for spatial randomness in mass density ρ only. In
order also to account for randomness in the elastic modulus μ, one has to go to
an earlier step in the derivation of a (linear) hyperbolic equation for a generally
inhomogeneous medium. Its form, again written for one realisation, is

∇ · [μ (ω,x) ∇u] = ρ (ω,x)
∂2u

∂t2
, ω ∈ Ω, x ∈ D. (1.8)
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Clearly, we deal with two scalar random fields: μ and ρ. While the mass density ρ
is naturally a scalar, this model has a drawback in that the shear elastic modulus
μ is only the isotropic characteristic (per Cij = μδij ; i, j = 1, 2) of a generally
anisotropic, second-rank anti-plane stiffness tensor C (= Cijei ⊗ ej):

Cij = C3i3j .

Here C3i3j stems from the general fourth-rank stiffness tensor C of 3D elasticity,
defined below. The tensor C is defined as a linear mapping of the space V such
that:

C : V → V, C ∈ S2 (V ) . (1.9)

In the physical picture, this is a mapping of the anti-plane shear strain u,i into
the anti-plane shear stress σj (= σ3j).

With reference to Figure 0.1 of the Introduction or Figure 1.1 here, the tensor-
valued random field C, adopted with whatever resolution is preferred for a
problem at hand, reflects the presence of spatial inhomogeneities – either at a sin-
gle crystal/grain level or at a polycrystal level. These inhomogeneities are random
and locally anisotropic, with randomness vanishing in the large mesoscale (many
grains) limit, assuming a homogeneity of spatial statistics, and approaching the
isotropy of an effective stiffness tensor providing the isotropy of spatial statistics
holds. This is the scaling trend of properties of the statistical volume element
(SVE) to the deterministic property of the representative volume element (RVE),

Figure 1.1 Upscaling from a finite domain (SVE) of a random two-phase com-
posite (a) to a TRF on macroscale (b). With the SVE mesoscale increasing,
the fluctuations tend to vanish and a homogeneous deterministic continuum
is obtained. Figure (a) A multicomponent nanocomposite with prolate and
oblate ellipsoids (Kale et al. 2018). Figure (b) was generated by the R package
(gencauchy 2D function with α = 1.8 and β = 0.2).
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e.g. Ostoja-Starzewski (2008); Ostoja-Starzewski et al. (2016). Basically, the
TRF hinges on the SVE concept, just as the deterministic tensor field hinges
on the RVE concept; see Section 4.7.

The same arguments apply to other continuum physics problems in 2D (two
dimensions, i.e. R2) or 3D, be they of rank 2 as well as higher tensor ranks. For
example, the piezoelectricity tensor D (= Dijkei⊗ej ⊗ek) is defined as a linear
mapping of the electric field vector into the Cauchy stress:

D : S2 (V ) → V, D ∈ S2 (V ) ⊗ V. (1.10)

Next, the stiffness tensor C (= Cijklei⊗ej ⊗ek⊗el), is defined as a symmetric
linear mapping of the strain into the Cauchy stress:

C : S2 (V ) → S2 (V ) , C ∈ S2
(
S2 (V )

)
. (1.11)

It being now agreed that various continuum physics models of constitutive
properties are rank 2, 3 and 4 tensor-valued random fields, we face this challenge:

What specific models to assume?

In classical theories of wave propagation in random media, one assumes har-
monic time dependence (eiγt), which, when applied to (1.7), readily leads to the
stochastic Helmholtz equation:

∇2u+ k(ω,x)u = 0, ω ∈ Ω, x ∈ D. (1.12)

Next, setting k(ω,x) = k2
0n

2(ω,x), one introduces a random wave number to
deal with the spatial randomness of the medium. Thus, k0 = γ/c0 is the wave
number of a reference homogeneous medium where c0 is its phase velocity, and
n(x, ω) is a random index of refraction. Hereinafter, we employ γ for the fre-
quency, rather than the conventional ω, which has already been reserved to
denote an outcome ω (i.e. a random medium’s realisation) from the sample
space Ω.

Equation (1.12) is a valid Ansatz whenever the time variation in the refractive
properties of the medium is much slower than the wave propagation itself; thus,
for example, swirling as rapid as the wave motion violates the monochromaticity
assumption. The random field n(ω,x), ω ∈ Ω, x ∈ D is determined from experi-
mental measurements. The conventional model has the form (with 〈·〉 indicating
the ensemble/statistical average):

n2(ω,x) = 1 + εμ(ω,x), (1.13a)

〈μ(ω,x)〉 = 0, (1.13b)

μ = O (1) , (1.13c)

so that all the randomness is present in the zero-mean random field μ. Note that
Rytov, Kravtsov & Tatarskĭı (1987) take n(ω,x) = 1 + εμ(ω,x). This classical
notation employing μ is not to be confused with the shear modulus above.
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The key rôle in setting up a random field is played by a correlation function
of μ which, given (1.13b), is

Cμ(x,x′) = 〈μ(x)μ(x′)〉.

Usually, μ is taken as a wide-sense homogeneous random field

Cμ(x,x′) = Cμ(x− x′) <∞, ∀x,x′,

possessing an ergodic property almost surely in Ω and X

〈μ (x)〉 = μ (ω).

Rytov et al. (1987) also discuss more general random field models such as, say,
those with stationary increments.

A special class of statistically isotropic random fields occurs when ρ(x) depends
only on the magnitude, but not direction, of the vector x:

Cμ(x) = Cμ(r), r = ‖x‖ =
√
xixi.

A very common model for the correlation coefficient is the Gaussian form

Cμ(r) =
〈
μ2
〉
exp[−r2/a2],

where a is the so-called correlation radius. Another common model fit is

Cμ(r) =
〈
μ2
〉
exp[−r/a],

although one must bear in mind that it corresponds to random fields with discon-
tinuous, rather than continuous, realisations (e.g. a granular/cellular structure
of a polycrystal).

Considering that a wide range of natural phenomena – including geological
formations, atmospheric turbulence or seismic motions, to name a few – possess
fractal and Hurst characteristics (Helland & Atta 1978; Mandelbrot 1982), two
powerful random field models have been developed over the past two decades:
Cauchy and Dagum (Gneiting & Schlather 2004; Mateu et al. 2007; Porcu et al.
2007; Porcu & Stein 2012). In general, the fractal dimension can be described as
a roughness measure that ranges from 2 to 3 in value for 2D systems. Typically,
the larger the fractal dimension, the rougher the field’s realisations. The Hurst
parameter, or Hurst exponent, is the long-range persistence of a system. In gen-
eral, if H ∈ (0, 0.5) the system is said to be anti-persistent (e.g. an increase in
value is typically followed by a decrease, or vice versa). If H ∈ (0.5, 1), the sys-
tem is said to be persistent (e.g. an increase is typically followed by an increase,
or vice versa). For H = 0.5 the system is said to reflect a true random walk
without any long-range persistence.

The Cauchy RF covariance function is

CC(r) = (1 + rα)−
β
α , r ≥ 0, α ∈ (0, 2], β > 0.
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The Dagum RF covariance function is

CD(r) = 1 − (1 + r−β)−
α
β , r ≥ 0, α ∈ (0, 1), β ∈ (0, 1].

These two random fields are unique in that they capture and decouple spatial
features with a fractal dimension (D) and Hurst parameter (H). The relation-
ships linking D, H with d, α and β for both Cauchy and Dagum RFs (Mateu
et al. 2007) are given by

D = d+ 1 − α

2
, and H = 1 − β

2
,

where d, for two dimensions, is equal to 2. Unfortunately, due to the restrictions
on α and β, Dagum RFs cannot capture as many pairs of D and H as compared
to Cauchy RFs.

These considerations indicate another challenge: find the most realistic models
of correlation functions of tensor-valued random fields.

1.1.2 Equations of Continuum Mechanics

In this book we focus on two types of tensor fields where randomness and local
anisotropy occur point-wise with probability one: (i) dependent fields, subject to
balance (governing) equations and (ii) fields of material properties, appearing in
constitutive models (e.g. conductivity or stiffness).

Balance equations

The formulation of balance equations of continuum mechanics first involves the
writing of a conservation law for a finite body of a continuum (integral form)
and then applying a localisation procedure to obtain an equation on infinitesimal
level (local form). Proceeding in the spatial (Eulerian) description, we first give
the Reynolds transport theorem:

d

dt

∫
B
PdV =

∫
B

[
∂P

∂t
+ (vkP ) ,k

]
dV. (1.14)

The conservation of mass
d

dt

∫
B
ρdV = 0, (1.15)

with vk being the velocity field, leads to the local form

∂ρ

∂t
+ (vkρ) ,k =

dρ

dt
+ ρvk,k = 0. (1.16)

The conservation of linear momentum
d

dt

∫
B
ρvidV = FB

i + FSi with FB
i =

∫
∂B
bidV, FSi =

∫
∂B
σkinkdS, (1.17)

where the last equality relies on the Cauchy theorem, invoking the concept of
the Cauchy stress σki. This leads to the local form
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ρ
dvi
dt

= bi + σki,k . (1.18)

The conservation of angular momentum

d

dt

∫
B
ρεijkxjvkdV =

∫
B
εijkxjbkdV +

∫
∂B
εijkxjσlknldS, (1.19)

where εijk is the Levi-Civita permutation tensor, on account of (1.14) and (1.18),
leads to the symmetry of the Cauchy stress:

σjk = σkj . (1.20)

While the above employs the standard approach to deriving (1.18) and (1.20),
an independent way of arriving at the same equations is through the invariance
of energy with respect to arbitrary rigid body translations and rotations.

The conservation of energy

dK
dt

+
dU
dt

=
1
2

∫
B
ρ
d(vivi)
dt

dV +
∫
B
ρ
du

dt
dV, (1.21)

where the kinetic and internal energies are

K =
1
2

∫
B
ρvividV, U =

∫
B
ρudV,

while introducing the heat flux qi (= q) and (for simplicity) neglecting any heat
sources/sinks, leads to the local form

ρ
du

dt
= σlk (vk,l ) − qi,i . (1.22)

The second law of thermodynamics written for a finite body B, involving the
entropy density s,

d

dt

∫
B
ρsdV ≥ −

∫
B

qk
T
nkdS, (1.23)

leads to the local form in terms of the reversible (ṡ(r)) and irreversible (ṡ(i))
entropy production rates

ṡ = ṡ(r) + ṡ(i) with

ṡ(r) = − (qi/T ),i and ṡ(i) :=
1
ρT

(
σ

(d)
ij dij + β

(d)
lk α̇lk −

T,i
T
qi

)
≥ 0.

(1.24)

This form, typical of the so-called thermomechanics with internal variables (TIV)
(see Section 1.4), relies on the definition of the free energy density (ψ) at the
local level

ψ := u− Ts, (1.25)

which serves as the potential for the quasi-conservative Cauchy stress, the
entropy and the quasi-conservative internal stress:

σ
(q)
ij := ρ

∂ψ

∂εij
, s := −∂ψ

∂T
, β

(q)
ij := ρ

∂ψ

∂εij
.
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The inequality (1.24) also involves the dissipative parts of the total Cauchy stress
(σij) and the total internal stress (βij)

σ
(d)
ij := σij − σ

(q)
ij , β

(d)
ij := −β(q)

ij .

The kinematic quantities of these, conjugate to σ(d)
ij (= σ(d)) and β(d)

ij (= β(d)),
respectively, are the deformation rate dij := v(i,j) (= d) and the rate α̇ij (= α̇)
of internal strain tensor αij (= α).

The basic continuum equations (1.16), (1.18), (1.20) and (1.22) are to be
satisfied by the dependent fields, with (1.24) serving as the restriction on the
constitutive behaviours.

The above scheme, while commonly accepted in classical continuum mechanics,
hides several basic assumptions:

● Neglect of the inner structure of a continuum point. Various more realistic
models are possible within the deterministic continuum physics; see Maugin
(2017) for a comprehensive review. For example, working with a micropolar
continuum, one treats the continuum point as analogous to a rigid body and
has to admit its microinertia, body moment, couple stress tensor, curvature-
torsion tensor, etc.

● The separation of scales

d� L� Lmacro, (1.26)

where d is the microscale, L the scale of a continuum point, and Lmacro

the macroscale (macroscopic dimension of the body). The left-side inequal-
ity (sometimes simply replaced by <) allows one to postulate the existence
of a Representative Volume Element (RVE) of continuum mechanics, so that
L = 3

√
dV , the size of infinitesimal volume. The second inequality covers the

range of length scales where conventional continuum mechanics applies – this
is the domain of spatial dependence of stress, strain and displacement fields
one is interested in when solving an initial-boundary value problem. Also, this
is where (1.1), with L being a deterministic operator, applies; the classical
Navier equation of elasticity is an example.

● Neglect of any possibility of spontaneous violations of the Second Law of
thermodynamics on nanoscales, where continuum physics models may still
be applied.

Constitutive relations

The specification of these relations involves the physics of the medium. Hence-
forth, the review of constitutive models is being done from one common
standpoint based on the free (or internal) energy and the dissipation function,
this pair being typical of TIV, which itself is based on the thermomechanics of
irreversible processes (de Groot & Mazur 1984). This strategy allows the treat-
ment of a very wide range of continuum-type phenomena within the Second Law
of thermodynamics as well as beyond that law, as dictated by the developments
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in statistical mechanics beginning with Evans, Cohen & Morriss (1993): on very
small scales where spontaneous violations of that law occur (Sections 4.2 and
4.3). Adopting the TIV approach also allows (i) scale-dependent homogenisa-
tion in the vein of Hill–Mandel condition, and (ii) accounting for transmission of
signals at finite wave speeds such as in hyperbolic thermoelasticity. Proceeding
with two basic TIV formulations – Ziegler’s thermodynamic orthogonality and
Edelen’s primitive thermomechanics – we give the basic governing equations of
continua.

The following sections give a review of basic equations of several continuum
physics theories, with a goal of providing a reference on tensor fields with locally
anisotropic realisations, which are candidates for stochastic continuum general-
isations. There is no attempt at giving a comprehensive background for all of
continuum physics. The outlined models provide a reference for determining, in
Chapter 4, the restrictions on TRFs dictated by the continuum physics, while
the most general representations of TRFs will first be obtained in Chapter 3,
based on a necessary mathematical background outlined in Chapter 2.

1.2 Conductivity

Consider the thermal conduction in a rigid (undeformable) material occupying
a domain D ⊂ Ed (d = 1, 2, 3) with boundary ∂D. The energy balance equation
(1.22) reduces to

qi,i = ρcṪ (1.27)

with the Fourier law

qi = −kijT,j (1.28)

where kij is a generally anisotropic conductivity, T is the absolute temperature
and T,j its gradient.

These two equations lead to a diffusion equation for heat conduction in terms
of the temperature T :

− (kijT,j ) ,i = ρcṪ . (1.29)

Dropping the time dependence and assuming an isotropic response analogous to
what was implied in (1.8)

kij = kδij , (1.30)

leads to the classical elliptic equation (kT,i ) ,i = f . However, if we keep the
local anisotropy present, a boundary value problem with Dirichlet boundary
conditions is (Lord et al. 2014):

− (kijT,j ) ,i = f (x) ∀x ∈ D,
T (x) = g (x) ∀x ∈ ∂D. (1.31)

With r ∈ C1
(
D
)
, the classical solution is of the class

T ∈ C2 (D) ∩ C1
(
D
)
.
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Table 1.1 Diverse physical problems involving rank 2 constitutive tensors and
governed by the elliptic equation or corresponding generalisations to diffusion

or wave equations

Physical
phenomenon

T ∇T k q

Thermal conductivity temperature thermal
gradient

thermal
conductivity

heat flux

Anti-plane elasticity temperature strain elastic
moduli

stress

Torsion stress function strain shear moduli stress

Electrical conduction potential intensity electrical
conductivity

current density

Electrostatics potential intensity permittivity electric induction

Magnetostatics potential intensity magnetic
permeability

magnetic induction

Diffusion concentration gradient diffusivity flux

In practical applications, oftentimes, r ∈ L2
(
D
)
, so that the derivatives in

(1.31) have to be interpreted in the weak sense (i.e. belonging to the Sobolev
space). Then, T ∈ H2 (D) ∩H1

0

(
D
)

and g ∈ H1/2 (∂D).
In stochastic problems, our functions are defined on a Cartesian product of

the domain D ⊂ Ed with the probability space (Ω,F,P). Then, k = kijei⊗ei is
the second-rank tensor field and also a second-order random field taking values
in S2(V ) (recall Equation (1.9)), such that

k : D ×Ω → V2 (1.32)

are functions belonging to L2
(
Ω,F, L2 (D)

)
that satisfy

‖k‖2
L2(Ω,F,L2(D)) =

∫
Ω

∫
D
k (x, ω) : k (x, ω) dxdP = E

[
‖k‖2

L2(D)

]
<∞.

Next, the source/sink function is a real-valued second-order random field

r : D ×Ω → R

belonging to L2
(
Ω,F, L2 (D)

)
and having the norm

‖r‖2
L2(Ω,F,L2(D)) =

∫
Ω

∫
D
r2 (x, ω) dxdP = E

[
‖r‖2

L2(D)

]
<∞.

Then the stochastic boundary value problem is to find T : D×Ω → R such that
P-a.s. (1.31) is satisfied. We return to stochastic partial differential equations in
Section 4.8.

Several analogues of the stochastic conductivity problems described by elliptic
equations of this type are given in Table 1.1. All of these theories are of local
type, while various, more complex models are continued in Sections 1.3–1.5. Basic
aspects of generalised continuum theories are introduced in Section 1.7.



24 Introduction to Continuum Theories

1.3 Elasticity

1.3.1 General 3D Case

The linear elastic body occupies the domain D with the boundary ∂D. It is
defined by a generally anisotropic Hooke law

σij = Cijklεkl or σ = C : ε (1.33)

where the strain is subject to the strain-displacement equation

εij = u(i,j) . (1.34)

The stiffness tensor satisfies two minor and one major symmetry relations

Cijkl = Cjikl = Cijlk = Cklij , (1.35)

where the first and second equalities are dictated by symmetries of the strain
and stress tensor, respectively, while the third is the consequence of the
hyperelasticity postulate. Cijkl satisfies the positive-definiteness condition

εijCijklεkl > 0. (1.36)

In the picture dual to (1.33), we have

εij = Sijklσkl or ε = S : σ (1.37)

where S : D ×Ω → V ⊗4 is the compliance tensor. With

CijklSijkl = 6 or CS = I, (1.38)

S satisfies the same symmetries as those in (1.35).
The linear momentum equation (1.18) reduces to a vector equation for the

displacement field ui: (
Cijklu(k,l)

)
,j +fi = ρüi. (1.39)

Assuming an isotropic elastic response

Cijkl = λδijδkl + μ (δikδjl + δilδjk)

where λ and μ are the Lamé constants, simplifies (1.33)

σij = λεkkδij + 2μεij , (1.40)

and also simplifies (1.39) to (recall Equation (0.5)):

μui,jj + (λ+ μ)uj ,ji +μ,j (uj ,i +ui,j ) + λ,i uj ,j +Fi = ρüi. (1.41)

While this equation still allows a smooth spatial inhomogeneity of λ and μ,
assuming them to be constant leads to the classical Navier equation of motion,

μui,jj + (λ+ μ)uj ,ji +fi = ρüi. (1.42)
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It is generally required that

ui (x, t) ∈ C2 (D, T ) ∩ C1
(
D, T

)
fi (x, t) ∈ C1

(
D, T

)
.

While the above formulation of elastodynamics in terms of displacements (and
its various, e.g. anisotropic generalisations) harks back to the memoir read to
the French Academy of Science on 14 May, 1821 by C. L. M. H. Navier and
published in Navier (1827), a pure stress-based formulation was developed in the
1950s and 1960s, e.g. Ignaczak (1963). Thus, elimination of ui and εij from Equa-
tions (1.34), (1.18) and (1.37) leads to the Ignaczak equation of elastodynamics
(Ostoja-Starzewski 2018):(

ρ−1σ(ik,k
)
,j) −Sijklσ̈kl +

(
ρ−1F(i

)
,j) = 0, (1.43)

where

Fij = Fi,j +Fj ,i +
λ

λ+ 2μ
Fk,k δij .

In the case of pointwise-isotropy, (1.43) reduces to(
ρ−1σ(ik,k

)
,j) −

1
2μ

(
σ̈ij −

λ

3λ+ 2μ
σ̈kkδij

)
+
(
ρ−1F(i

)
,j) = 0.

Note that, in contradistinction to the displacement formulation (1.39) and (1.41),
this formulation avoids gradients of compliance but introduces gradients of mass
density.

1.3.2 2D Cases

In-plane elasticity

Assuming the body forces and all the dependent fields to be independent of
one coordinate, say, x3, the linear momentum equation (1.18) and the Hooke
law – either (1.33) or (1.40) – hold providing i, j = 1, 2. However, care has to
be exercised in distinguishing between the plane strain and plane stress. In the
first case, assuming isotropy, these equations as well as (1.42) hold. In the second
case, also assuming isotropy, the Hooke law is typically written in the form

σij =
2μλ
λ+ 3μ

εkkδij + 2μεij .

Note that both cases can be written jointly as special cases of the planar
elasticity involving the strains (ε11, ε22, ε12), the stresses (σ11, σ22, σ12), and one
compatibility equation:

ε22,11 + ε11,22 = 2ε12,12. (1.44)

The isotropic Hooke law can be written as

σij = λ2Dεkkδij + 2μ2Dεij , i, j, k = 1, 2,
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where λ2D and μ2D are the planar Lamé constants; see Ostoja-Starzewski (2008,
chapter 5) for a more complete discussion of planar (in-plane) versus 3D elasticity
theories. Henceforth, one can proceed with simpler models than those in the 3D
case.

Anti-plane elasticity

As discussed earlier, there is only one degree of freedom per continuum point:
the anti-plane displacement u ≡ u3 (x1, x2), and hence there is only one non-zero
component of the body force: f ≡ f3. The balance of linear momentum (1.18)
reduces to σj ,j +f = ρü (j = 1, 2) leading to the governing equation

[(Ciju,j ) ,i +f = ρü, j = 1, 2, (1.45)

where Cij is the second-rank second-order tensor random field (1.9), i.e. the anti-
plane part Ci3j3 of Cikjl. In the static case, this model is essentially the same as
(1.29) for the in-plane conductivity. For an isotropic material (Cij = μδij),

(μu,i ) ,i +f = ρü,

which, in the special case of spatial homogeneity of μ (i.e. no randomness),
reduces to a scalar wave equation with body force field: μu,ii +ρb = ρü. This is
the dynamic version of the elasticity of the second row in Table 1.1. Assuming
ü = 0 gives the anti-plane elastostatics. Assuming f = 0, the linear wave equation
c2u,ii = ü (with the wave speed c =

√
μ/ρ) is obtained, which is the basis of the

stochastic Helmholtz equation (1.12) above.

1.4 Thermomechanics with Internal Variables (TIV)

1.4.1 Dissipation Function in Thermomechanics

within Second Law

This type of continuum theory builds on Onsager’s (1931) irreversible thermody-
namics, which is based on the assumption that the entropy and internal energy
in the equilibrium state serve as a reference for the non-equilibrium state. The
approach originated by Ziegler (1983) has led to thermodynamics of irreversible
processes (TIP) (de Groot & Mazur 1984) and then to the thermomechanics
with internal variables (TIV) relying on two functionals

free energy ψ (ε, T ) dissipation function φ (d, q̇, α̇) . (1.46)

It is postulated that these two functionals describe the entire constitutive
behaviour of the material: ψ (ε, T ) the conservative and φ (d, q̇, α̇) the dissi-
pative.

Note: Relations (1.46) display a generic choice of arguments – depending on
the phenomenon studied, there may be other/more variables involved.

The Second Law of thermodynamics is written in terms of the reversible (ṡ(r))
and irreversible (ṡ(i)) parts of entropy production rate (ṡ) (Ziegler 1983; Ziegler
& Wehrli 1987; Maugin 1999):
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ṡ = ṡ(r) + ṡ(i) with (1.47a)

ṡ(r) = −∂ (qi/T )
∂xi

and (1.47b)

ṡ(i) ≥ 0, (1.47c)

where T is the absolute temperature while qi (q) is the heat flux. This form
of writing the Second Law naturally involves the dissipation function φ = ṡ(i),
which, in principle, provides a constitutive law for the irreversible part of the
response.

Setting Y =
(
σ(d),∇T,β(d)

)
as the vector of dissipative forces (with σ(d)

being the dissipative stress and β(d) the dissipative internal stress) dual to the
vector of velocities V = (d, q̇, α̇), the dissipation function φ is defined by

φ(V ) = Y · V = ṡ(i) ≥ 0. (1.48)

Y is given by the gradient in the velocity space:

Y = λ∇vφ i.e. Yi = λ
∂φ (V )
∂Vi

where λ =
(
Vi
∂φ (V )
∂Vi

)−1

φ. (1.49)

Here, λ is the Lagrangean multiplier in an extremum principle underlying this
approach, while the classical Onsager reciprocity relations hold:

∂Yi(V )
∂Vj

=
∂Yj(V )
∂Vi

.

Clearly, the linear relation Y = L · V of Onsager’s thermodynamics is obtained
as a special case.

Typically, φ = Y · V is taken as a functional of the velocity V so as to obtain
the dissipative force Y :

Yi = λ
∂φ (V )
∂Vi

where λ =
(
Vi
∂φ (V )
∂Vi

)−1

φ. (1.50)

Effectively, this means that, provided the dissipative force Y is prescribed, the
actual velocity maximises the dissipation rate ṡ(i) = Y · V subject to the side
condition (1.48).

This is not the only extremum-type interpretation of (1.49), others being
e.g. the principle of least velocity, the principle of least dissipative force.
The approach hinges on the so-called thermodynamic orthogonality postulat-
ing a maximisation of entropy production in non-linear processes, just as it is
maximised in linear processes.

While (1.49) applies to a very wide range of linear and non-linear material
behaviours, it does not cover all of them. This is accomplished by the primitive
thermodynamics of (Edelen 1973; Edelen 1974), in which the most general solu-
tion of the inequality (1.48c) is based on a decomposition theorem: assuming
Y = Y (V ), there always exist functions ϕ (V ) and U (V ) such that
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Yi =
∂ϕ (V )
∂Vi

+ Ui (1.51)

with

ϕ (V ) ≡
∫ 1

0

ViYi (τV ) dτ

and

Y ·U = 0, Ui (V ) ≡
∫ 1

0

τVj

[
∂Yj (τV )
∂ (τVi)

− ∂Yi (τV )
∂ (τVj)

]
dτ. (1.52)

Given (1.52), U (V ) is called the non-dissipative (or powerless) vector; also
U (0) = 0. The Maxwell–Cattaneo heat conduction is an example of a process
derivable by this approach.

By analogy to the rôle played by the free energy ψ for quasi-conservative
processes (such as hyperelasticity), φ or ϕ plays the rôle of a potential for all
the dissipative processes, which are then called hyperdissipative (Goddard 2014).
Effectively, the functional φ (V ) or φ (Y ) is employed to derive the constitutive
laws of continua. In general, there is no perfectly-established (and uniformly
agreed-upon) rule to decide whether V or Y should be the argument of the
functional ϕ or φ.

Note that φ, but not ϕ, is directly equal to the dissipation s∗(i). Clearly, in
the linear response regime, ϕ = φ/2 providing U = 0.

1.4.2 Dissipation Function in Statistical Physics

Beyond Second Law

The inequality in (1.48) is assumed to hold always (i.e. for ∀t) in conventional
continuum physics, whereas in contemporary statistical physics (e.g. Evans &
Searles 2002) the Second Law is replaced by the fluctuation theorem. It gives the
ratio of probabilities of observing processes that have, respectively, positive (A)
and negative (−A) total dissipations in non-equilibrium systems:

P (φt = A)
P (φt = −A)

= eAt. (1.53)

The theorem is illustrated with the help of Figure 1.2(e) and (f) and explained
a little further below. In (1.53) φt is the total dissipation for a trajectory Γ ≡
{q1, p1, . . . , qN , pN} of N particles originating at Γ (0) and evolving for a time t:

φt (Γ (0)) =
∫ t

0

φ (Γ (s)) ds. (1.54)

The integral in (1.54) involves an instantaneous dissipation function:

φ (Γ (t)) =
dφt (Γ (0))

dt
. (1.55)



1.4 Thermomechanics with Internal Variables (TIV) 29

The Second Law of thermodynamics is recovered upon ensemble averaging, time
averaging or upscaling.

To better explain the mechanics behind Figure 1.2, consider a molecular
dynamics simulation using LAMMPS software (Plimpton 1995) involving 50 par-
ticles, with Lennard–Jones (LJ) (6–12) potential interactions, in a Couette flow,
Figure 1.2(a). In a channel of width L, the bottom plate is stationary while the
top plate is moving at a constant speed (v1 = d12L) to the right (x1), with peri-
odic boundary conditions assumed on the left and right vertical boundaries. The
fluid is thermostatted at a target temperature of To = 1 in LJ units. Figure 1.2(c)
gives the time history of the resulting shear stress σ21 (directly obtained from
LAMMPS), clearly showing its spontaneous, random-like fluctuations exhibit-
ing negative(!) excursions. In a continuum approximation, the dissipation (i.e.
entropy production) rate is computed, in general, from the trace of deformation
rate d (dij) with the Cauchy stress tensor σ (σij), i.e. ṡ = d : σ, which given
the simple geometry here takes the simple form

ṡ = d : σ = d12σ12.

Since σ12 sometimes becomes negative, the probability of negative entropy pro-
duction is non-zero, as reflected by the shear stress history in the plot of
Figure 1.2(e).

Next, if the same type of experiment is conducted in a channel containing
a larger number of particles – Figure 1.2(b) – the spontaneous, random-like
fluctuations decrease – Figure 1.2(d) – and the negative excursions and negative
entropy production are statistically less likely – Figure 1.2(f). As the number of
particles increases further, the fluctuations become ever smaller and the shear
stress history tends to a constant – the violations of Second Law tend to be
improbable: the deterministic Stokesian continuum is recovered.

In view of (1.49) above, the dissipation function is a stochastic (not determin-
istic) quantity which possibly and spontaneously takes negative values, so that
the positive-definiteness does not absolutely hold. Therefore, we change (1.48) to

φ (V , ω) = Y (ω) ·V = s∗(i), ω ∈ Ω, (1.56)

where Y (ω) are the dissipative forces conjugate to V , while Ω is the set of
all possible outcomes. Thus, the argument ω in (1.56) indicates that φ(V , ω)
is a stochastic functional, while Y (ω) is a random quantity for a non-random
(prescribed) velocity V . An analogous picture holds for Y being prescribed and
V being the random outcome. It is tacitly assumed that Ω is equipped with a
σ-field of observable events F and a probability measure P defined on F.

The fluctuation theorem as expressed by (1.53) states that (i) positive dissi-
pation is exponentially more likely to be observed than negative dissipation, and
(ii) ensemble averaging of φt leads to

〈Δφt | Ft〉 ≥ 0.
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Figure 1.2 Molecular dynamics simulations using (Plimpton 1995) of Couette
flows in channels with (a) 50 and (b) 750 particles. (c)–(d) Respective sample
shear stress histories with evident negative excursions. (e)–(f) Histograms of
shear stresses, showing the trend, with system size increasing, to deterministic
fluid mechanics without violations of the Second Law of thermodynamics.
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Here | Ft indicates the conditioning on the past history and is discussed below,
while 〈f〉 :=

∫
f dP. Thus, the entropy production rate is non-negative on aver-

age. In view of the random fluctuations, φt is a stochastic process with a specific
type of memory effect: a submartingale (Doob 1990, Ostoja-Starzewski & Mal-
yarenko 2014). Treating time as a continuous parameter and noting that φt is
deterministic for a forward evolution, we have

〈φt+dt | Ft〉 ≥ φt.

Clearly, this is a weaker statement than a purely deterministic one

φt+dt | Ft ≥ φt or, equivalently,
φt+dt − φt

Δt
≥ 0.

The latter inequality is the same as writing (1.47c) in a finite difference form.
Next, we recall the Doob–Meyer decomposition to write φt as a sum of a

martingale (M) and a ‘drift’ process (G):

φt(V , ω) = M +G and φ(V , ω) = Ṁ + Ġ.

Thus, M �= 0 reflects the fluctuations of entropy production about the zero level〈
s(i)
〉

= 0. The four different cases, depending on whether M = 0 or M �= 0 and
G = 0 or G > 0, have been discussed in Ostoja-Starzewski & Malyarenko (2014).
Overall, the deterministic continuum mechanics is smoothly recovered as the time
and/or spatial scale increases (so thatM → 0) or via ensemble averaging: a result
that is consistent with intuition. A corresponding re-examination of axioms of
continuum mechanics has been given in Ostoja-Starzewski (2016).

Observe that one might also work with a discrete time formulation, making
the mathematical analysis of martingales simpler. It is fitting here to note that
mathematical physics – also in the classical, i.e. non-quantum, regime – may
be formulated from the standpoint of discrete, rather than continuous, time
(Jaroszkiewicz 2014).

There are three types of phenomena in classical physics where the fluctuation
theorem is applicable: viscous, thermal and electrical (Evans & Searles 2002;
Searles & Evans, 2001). If we concern ourselves with the first two, a contact
with continuum thermomechanics is made by writing the scalar product Y · V
as one involving the intrinsic mechanical dissipation (viscous effects) and thermal
dissipation in spatial (Eulerian) description:

φ(V , ω) = φth(V1, ω) + φmech(V2, ω), V ≡ (V1,V2) =
(
−∇T

T
,d

)
. (1.57)

Thus, the generalised velocity vector V is made up of two parts: the negative
temperature gradient divided by the temperature (i.e. −∇T/T ) and the defor-
mation rate d. The reason we take the former as the argument of φth is that
the fluctuation theorem for heat flow was derived for controllable temperature
differences, with the heat flux being the stochastic outcome. Analogously, the
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fluctuation theorem for Couette and Poiseuille flows was derived for controllable
velocities, with the Cauchy stress being the stochastic outcome. Thus, the dissi-
pative force corresponding to V is made up of the heat flux and the dissipative
stress:

Y ≡ (Y1,Y2) =
(
q,σ(d)

)
.

It is largely a matter of convenience whether −∇T/T or q should be taken as
a velocity or a dissipative force. In the section on thermoviscous fluids we work
with the setup outlined above, while in the section on inviscid thermoelastic
solids we invert the roles of −∇T/T and q.

There are two basic possibilities here:

● both processes in (1.57) may independently exhibit spontaneous random
violations of the Second Law;

● both processes in (1.57) are coupled, implying that the Clausius–Duhem
inequality holds for thermal and viscous violations jointly; the relevant
statistical physics has not yet been studied.

In Ostoja-Starzewski (2017), we considered the first possibility, focusing on:
(i) thermoviscous fluids with parabolic or hyperbolic type heat conduction,
(ii) thermoelasticity with parabolic or hyperbolic type heat conduction and
(iii) poromechanics with dissipation within the skeleton, the fluid and the tem-
perature field. The reason we considered parabolic or hyperbolic cases is that the
statistical physics has established the spontaneous violations of the Fourier-type
law, but a hyperbolic heat conduction in fluids and solids can still be modelled in
continuum mechanics provided that two relaxation times – one in the mechanical
and another in the entropy constitutive law – are introduced (recall the ‘ther-
moelasticity with two relaxation times’). The theoretical developments hinge on
the fact that the balance laws apply irrespective of the conventional Second Law
being obeyed or not. At the same time, we are interested in formulating mod-
els which are hyperelastic and hyperdissipative in ensemble average sense (or
for long time averages), thereby extending such classes beyond the deterministic
media fully obeying the Second Law.

1.4.3 Stochastic Dissipation Function

Basics

In view of the preceding section, the constitutive relation linking Y with V
should be stochastic. Therefore, we replace the deterministic picture by a stochas-
tic one so the internal energy density u and the entropy s are real-valued random
fields over the material (D) and time (T ) domains. For example, in the case of
heat conduction in a rigid (undeformable) conductor,

u : D × T ×Ω → R, s : D × T ×Ω → R. (1.58)
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The randomness disappears as the time and/or spatial scales become large: the
field quantities simplify to deterministic functions of a homogeneous continuum.
Focusing on the thermal dissipation in (1.57), we have

φth

(
−∇T

T
, ω

)
= −qk

T,k
T

≡ −q·∇T

T
. (1.59)

Given the stochastic violations of the Second Law, φth(q, ω) takes the form:

φth(q, ω) = Ġ(q) + Ṁ(q, ω).

For the linear Fourier-type conductivity, it becomes more explicit with

Ġ(q) =
1
T
qiκijqj , Ṁ(q, ω) =

1
T
qiMij (ω) qj .

Here Ġ(q) involves the thermal resistivity λij , which is positive definite, and
Ṁ(q, ω) = dM(q, ω)/dt, with M being the martingale modelling the random
fluctuations according to (1.53). Clearly, the randomness residing in M(d, ω)
allows the total thermal conductivity κij + Mij to become negative since Mij

is not required to be positive definite, thus signifying the violations of the Sec-
ond Law. More specifically, Mij : V → V (where V is a real vector space) is a
second-order rank 2 tensor random field (Malyarenko & Ostoja-Starzewski 2014;
Malyarenko & Ostoja-Starzewski 2016b)

Mij : D ×Ω → V ⊗2. (1.60)

In the linear regime the fluctuations are Gaussian, so that Mij is a Gaussian
TRF. Above the critical deformation rate (equivalently called ‘strain rate’), an
ordering transition from an amorphous phase to a ‘string-phase’ in which parti-
cles align with the direction of the flow. Beyond that critical deformation rate,
correlations develop, thus indicating the development of internal structure and
anisotropy within the fluid, along with a departure from Gaussianity (Raghavan
et al., 2018). Using the principle of maximum entropy, the shear stress σ12 has
been found to follow a variance-gamma probability density function:

f (σ12; a, b, β, 〈σ12〉) =
2ab

Γ (b)σ2

√
2π (β2 + 2aσ2)b−1/2

× |〈σ12〉 − σ12|b−1/2

×Kb−1/2

(√
β2 + 2aσ2

σ2
|〈σ12〉 − σ12|

)
× exp

(
β |〈σ12〉 − σ12| /σ2

)
.

Here, Kb−1/2 is the modified Bessel function of the second kind, a and b are

adjustable constants, while σ =
√

〈σ11〉 〈σ22〉 − 〈σ12〉2.
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Atomic Fluid in Couette Flow

In Raghavan & Ostoja-Starzewski (2017), based on a kinetic theory and
Non-Equilibrium Molecular Dynamics we have derived a shear-thinning model
equation of state for an atomic fluid with interactions of Lennard–Jones type.
This, in turn, leads to a dissipation function ϕ (Y ), in which the dissipative
force Y is the symmetric Cauchy stress tensor σ(d)

ij and V is the deformation
rate dij . For a uniform shear flow, the dissipative force is just the shear stress
σ

(d)
12 corresponding to the applied deformation rate γ̇, so that

σ
(d)
ij (dij) dij = φ (d) =

η0γ̇
2

1 + 2
3 (γ̇/ν)2

,

where ν = p/η0 with η0 being the Newtonian viscosity and p being the pressure.
Adopting the thermodynamic orthogonality (1.49), on account of the side con-
ditions (d(1) = 0, d(2) = γ̇2, and d(3) = 0) and several intermediate steps, we
obtain a quasi-linear fluid model

σ
(d)
ij = λ

∂φ

∂d(2)
dij = 2η

(
d(2)

)
dij , (1.61)

with the constant of proportionality in (1.61) being

λ =
1 + 2

3 (γ̇/ν)2

2
.

The fluid viscosity η needs to at least depend on d(2) = γ̇2.
Owing to the aforementioned formation of the string-phase, the viscosity

should more realistically be treated as a locally anisotropic non-Gaussian random
field.

1.5 Multi-Field Theories

1.5.1 Thermoelasticity

Classical thermoelasticity

The free energy and dissipation functions are:

free energy: ψ (εij , T ) =
1
2
εijCijklεkl +Mijεijϑ− CE

2T0
ϑ2

dissipation function: φ (qi) =
1
T
λijqiqj .

In the linear thermoelastic body the generally anisotropic Hooke law (1.33) is
replaced by

σij = Cijklεkl +Mijϑ,

whereby the strain-displacement equation (1.34) holds as before. Here Mij

denotes the stress–temperature tensor, while ϑ = T − T0, with T0 being the ref-
erence temperature. There are two more constitutive equations: one for entropy
density,
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s = −Mijεij +
CE
T0

ϑ,

where CE denotes the specific heat at zero strain, and the second for thermal
conductivity already given as (1.28). In addition to the symmetries (1.35), there
hold these inequalities:

Mij = Mji, CE > 0. (1.62)

Any thermoelastic process involves a mechanical field and a thermal field,
which translates into four possibilities of describing the entire process: in terms
of either a pair (ui, T ), or (σij , qi), or (ui, qi), or (σij , T ). For example, in the
first case,

(Cijkluk,l ) ,j −ρüi + (Mijϑ) ,j = −bi,
(kijϑ,j ) ,i−CEϑ̇+ T0Mij u̇i,j = −r,

(1.63)

where r is the external heat source field.
Assuming locally isotropic material responses [(1.40), (1.30) and Mij = Mδij ],

one obtains a generalisation of the classical Navier equation of motion (1.42)
coupled with a Duhamel equation:

(λuj ,j ) ,i +
(
μu(i,j

)
,j) −ρüi + (Mϑ) ,i = −bi,

(κϑ,i ) ,i−CEϑ̇+ T0Mu̇i,i = −r,

where M = (3λ+ 2μ)α, with α being the thermal expansion coefficient.
When Mij = 0 these equations decouple into (1.39) and (1.29). Another sit-

uation when the mechanical field decouples from the thermal fields, resulting in
this procedure: the temperature field is determined first and then used as, effec-
tively, a body force field driving the elasticity problem; the temperature field is
unaffected by the stress and strain fields. See Hetnarski (2013) for very exten-
sive information on this and related topics in continuum mechanics with thermal
stresses.

Hyperbolic thermoelasticity with one relaxation time

The free energy and dissipation functions are:

free energy: ψ(εij , qi, T ) =
1
2
εijCijklεkl +Mijεijϑ− CE

2T0
ϑ2

+
t0

2T0
λijqiqj ,

dissipation function: ϕ(qi) =
1

2T0
λijqiqj ,

(1.64)

where ϑ = T −T0. This theory has its roots in a modification of the Fourier heat
conduction (1.29), first proposed by Maxwell (1867) in the context of theory of
gases, and later by Cattaneo (1949) in the settings of rigid bodies:

Lqi = −κijT,j ,
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where L is an operator defined by L = 1+t0∂/∂t, with t0 > 0 being the so-called
relaxation time. Employing the primitive thermodynamics (1.51), leads to the
constitutive equations for stress and entropy:

T0ṡ = −qi,i +r, (1.65a)

σij = Cijklεkl +Mijϑ, (1.65b)

T0s = −T0Mijεij + CEϑ. (1.65c)

Note: This thermoelasticity model was originally formulated via a free energy
function of the form (Lord & Shulman 1967):

ψ(εkl, qi, T ) =
1
2
εijCijklεkl +Mijεijϑ− CE

2T0
ϑ2 +

t0
2T0

λijqiqj ,

but, since the heat conduction is a dissipative process, a TIV approach explicitly
involving dissipation in the (1.64) is more natural.

By analogy to (1.63) of the classical thermoelasticity, one can formulate the
displacement–temperature field equations:

(Cijkluk,l ),j −ρüi + (Mijϑ) ,j = −bi,
(kijϑ,j ) ,i−CE ˙̂

ϑ+ T0Mij
˙̂ui,j = −r̂,

(1.66)

where a hat denotes action of the operator L on any function f on D × (0,∞):
f̂ = Lf .

Alternatively, the field equations can be written in terms of the stress–heat
flux pair (σij , qi):

(ρ−1σ(ik,k ),j) −Sijklσ̈kl + C−1
S Aij q̇k,k = −(ρ−1b(i),j) +C−1

S Aij ṙ,

(C−1
S qk,k ),i−λij ˙̂qj + T0(C−1

S Apqσ̇pq),i = (C−1
S r),i ,

which generalises the Ignaczak equation of classical elasticity (1.43). Here CS is
the specific heat at zero stress.

Thermoelasticity with two relaxation times

The Ansatz is now based on:

free energy: ψ = ψ(εij , T, Ṫ ) =
1
2
εijCijklεkl +Mijεijϑ− CE

2T0
ϑ2

− CE
T0

t0ϑϑ̇, (1.67)

dissipation function: ϕ(ε̇ij , qi) = t1Mij ε̇ij ϑ̇+
λij
T
qiqj ,

which involves two relaxation times, t0 and t1. Employing the thermodynamic
orthogonality leads to the constitutive equations for stress and entropy:

σij = Cijklεkl +Mij(ϑ+ t1ϑ̇),

T0s = −T0Mijεij + CE(ϑ+ t0ϑ̇),
t1 ≥ t0 > 0,
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with (1.65a) unchanged and the Fourier heat conduction (1.28). Effectively, all
the disturbances propagate at finite wave speeds.

Note: This thermoelasticity model was originally formulated via a free energy
function of the form (Green & Lindsay 1972):

ψ(εij , T, Ṫ , T,i ) =
1
2
εijCijklεkl +Mijεij(ϑ+ t1ϑ̇)

− CE
2T0

ϑ2 − CE
T0

t1ϑϑ̇− CE
2T0

t0t1ϑ̇
2 +

t1
2T0

kijϑ,i ϑ,j ,

but, since the heat conduction is a dissipative process, a TIV approach explicitly
involving dissipation in the (1.67) is more natural.

By analogy to the preceding two theories, one can formulate coupled field
equations in terms of the pair (ui, ϑ):

(Cijkluk,l ),j −ρüi + [Mij(ϑ+ t1ϑ̇)],j = −bi,
(kijϑ,j ) ,i−CE(ϑ̇+ t0ϑ̈) + T0Mij u̇i,j = −r,

or in terms of the pair (σij , qi):

(ρ−1σ(ik,k ),j) −S′ijklσ̈kl + C−1
S Aij q̇k,k = −(ρ−1b(i),j) +C−1

S Aij ṙ,

(C−1
S qk,k ),i−λij ˙̂qj + T0(C−1

S Apqσ̇pq),i = (C−1
S r),i .

An extensive study of these hyperbolic theories of thermoelasticity is in
Ignaczak & Ostoja-Starzewski (2010).

1.5.2 Viscothermoelasticity

Viscoelasticity via Boltzmann superposition principle

This classical approach is based on the Boltzmann superposition principle
(Staverman & Schwarzl 1956; Christensen 2003), where the past causes in the
history of loading at a material point are reflected as a summation (i.e. super-
position) of all the effects up to the present. Mathematically, if F is a linear
tensor-valued functional which transforms each strain history {εkl(t),−∞ ≤ t ≤
∞} into a corresponding stress history {σij(t),−∞ ≤ t ≤ ∞}, on account of the
Riesz representation theorem, we have

σij(t) =
∫ ∞

0

Gijkl (t− τ)
dεkl
dτ

dτ, (1.68)

where Gijkl is a relaxation modulus. Alternatively (and equivalently), (1.68) may
be expressed as

εij(t) =
∫ ∞

0

Jijkl (t− τ)
dσkl
dτ

dτ, (1.69)

where Jijkl is the creep compliance. A number of relations for Gijkl and Jijkl, as
well as between them are dictated by the properties of Laplace transformation
such as (with s being the Laplace transform variable)

L (Jijkl) =
[
s2L (Gijkl)

]−1
,
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which shows that the intuitive extension analogous to (1.38) does not hold. How-
ever, the initial and final value theorems of the Laplace transformation imply
that

lim
t→0
Jijkl = lim

t→0
G−1
ijkl,

and for solids

lim
t→∞

Jijkl = lim
t→∞

G−1
ijkl.

Anisotropy can also be handled when a Fourier, rather than Laplace,
transformation (γ being the frequency) is introduced:

f̂ (γ) =
∫ ∞

−∞
f (t) e−iγtdt, f (t) =

1
2π

∫ ∞

−∞
f̂ (t) eiγtdt,

we can write the stress–strain relations (1.68) and (1.69) as

σ̂ij(t) = G∗
ijkl (iγ) ε̂kl, ε̂ij(t) = J∗ijkl (iγ) σ̂kl.

Here G∗
ijkl is the complex modulus and J∗ijkl is the complex compliance.

Parabolic formulation of viscothermoelasticity

It is well known that, as an alternative to the integral formulation above, the vis-
coelastic laws may also be written in differential forms. In general, if an isotropic
material response is assumed and n internal parameters are introduced, then one
arrives at (i) a scalar differential equation for the first basic invariants (denoted
by (1)) of the stress and strain tensors:

σ(1) + p(1)σ̇(1) + . . .+ p(n)σ
(n)
(1) = q(0)ε(1) + q(1)ε̇(1) + . . .+ q(n)ε

(n)
(1)

(1.70)

and (ii) a tensorial differential equation for the deviatoric parts (denoted by
primes) of these tensors:

σij + p(1)′σ̇′
ij + . . .+ p(n)′σ

(n)′
ij = q(0)′εij + q(1)εij + . . .+ q(n)ε

(n)
ij . (1.71)

In (1.70) (respectively, (1.71)), p(1), . . . , q(n) (p(1)′, . . . , q(n)′) are the coef-
ficients of pressure-dilatation (deviatoric) type responses. Adding parabolic-
type heat conduction results in extra terms on the right-hand side
in (1.70):

σ(1) + p(1)σ̇(1) + · · · + p(n)σ
(n)
(1) = q(0)ε(1) + q(1)ε̇(1) + . . .+ q(n)ε

(n)
(1)

+ r(0) (T − T0) + r(1)Ṫ + · · · + r(n)T (n).
(1.72)

This type of model can also be written for a locally anisotropic material
response with all the constitutive coefficients becoming rank 4 tensors. However,
introducing a hyperbolic-type heat conduction is not as straightforward.
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Hyperbolic formulation of viscothermoelasticity
with one relaxation time

In order to set up the constitutive viscothermoelastic equations generalising
those of thermoelasticity with one relaxation time (1.65), we admit one internal
variable αij in the internal energy u (Ostoja-Starzewski 2014). As always, the
specific power of deformation is l = σij ε̇ij/ρ and the classical relation (1.25)
holds, whereby, switching the entropy s to the absolute temperature T , we have
ψ = ψ(T, qi, εij , αij) and s = s(T, qi, εij , αij). By modifying (1.64), the free
energy is now taken in the form (again with ϑ = T − T0):

free energy: ψ(εij , αij , qi, T ) =
1
2

2∑
r=1

(εij − α
(r)
ij )C(r)

ijkl(εkl − α
(r)
kl )

+Mijεijϑ− CE
2T0

ϑ2 +
t0

2T0
λijqiqj ,

where α(1)
ij ≡ αij , α

(2)
ij = 0, C(r)

ijkl (r = 1, 2) are the stiffness tensors, Mij and CE
are defined as before. This choice of ψ corresponds to a particular setup of the
Zener model : Maxwell element in parallel with a spring. In effect, C(1)

ijkl is the

stiffness tensor associated with the Maxwell element while C(2)
ijkl is the stiffness

tensor of the spring. It follows that

σ
(q)
ij =

∑2

r=1
C

(r)
ijkl(εkl − α

(r)
kl ) +Mijϑ,

β
(q)
ij = −C(1)

ijkl(εkl − αkl),

s = −Mijεij +
CE
T0

ϑ.

Restricting the model to linear dissipative processes, we can satisfy (1.48) and
(1.52) by adopting:

ρTs∗(i) = ρϕ(V) =
1
2
α̇ijFijklα̇kl +

1
2T

λijqiqj ,

which leads to the governing equation

σmn +
(
C

(1)
ijkl

)−1

Fmnklσ̇ij = C(2)
mnprεpr +

(
C

(1)
ijkl

)−1

Fmnkl

(
C

(1)
ijkl + C

(2)
ijkl

)
ε̇kl

+Mmnϑ+
(
C

(1)
ijkl

)−1

FmnklMij ϑ̇.

The heat conduction is hyperbolic according to the telegraph-like equation for
the temperature coupled with the displacement field, where ˙̂ui,j = u̇i,j + t0üi,j

(kijϑ,j ) ,i−CE ˙̂
ϑ+ T0Mij

˙̂ui,j = 0.
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Hyperbolic formulation of viscothermoelasticity with
two relaxation times

To generalise the constitutive thermoelastic equations with two relaxation times,
the internal energy and dissipation function are taken as u = u(εij , T, Ṫ ) and
φ = φ(ε̇ij , qi, q̇i). By adding the internal strain term to (1.67), the free energy is

ρψ(εij , αij , T, Ṫ ) =
1
2
(εij − αij)C

(1)
ijkl(εkl − αkl) +

1
2
εijC

(2)
ijklεkl

+Mijεijϑ− CE
2T0

ϑ2 − CE
ϑ0

t0ϑϑ̇,

which leads to

σ
(q)
ij = ρ

∂ψ

∂εij
= C(1)

ijkl(εkl − αkl) + C(2)
ijklεkl +Mijϑ

s = −ρ∂ψ
∂T

= −Mijεij +
CE
T0

ϑ+
CE
T0

t0ϑ̇

β
(q)
ij = ρ

∂ψ

∂αij
= −C(1)

ijkl(εkl − αkl).

Next, adopting the dissipation function

ρTs∗(i) ≡ ρφ(ε̇ij , α̇ij , qi) = α̇ijFijklα̇kl + t1Mij ε̇ij ϑ̇+
1
T
λijqiqj

leads to the constitutive equation linking stress (and its rate) with strain (and
its rate) with temperature (and its first and second rates):

σmn +
(
C

(1)
ijkl

)−1

Fmnklσ̇ij = C(2)
mnprεpr +

(
C

(1)
ijkl

)−1

Fmnkl

(
C

(1)
ijkl + C

(2)
ijkl

)
ε̇kl

+Mmnϑ+
[
t1Mmn +Mij

(
C

(1)
ijkl

)−1

FmnklM

]
ϑ̇

+ t1Mij

(
C

(1)
ijkl

)−1

Fmnklϑ̈.

Again, the heat conduction is hyperbolic according to the telegraph-like equation
for the temperature coupled (albeit in a simpler fashion than in the one relaxation
time case) with the displacement field

(kijϑ,j ),i−CE(ϑ̇+ t0ϑ̈) + T0Mij u̇i,j = 0.

1.5.3 Piezoelectricity

The field equations of piezoelectro-elastodynamics for a generally anisotropic
medium (Nowacki 1975) involve a combination of the strain-displacement
relations (1.34) and the equations of motion (1.18), along with:

● the electric field-potential relations

Ei = −Φ,i ,
● the electric induction equation

Di,i = 0,
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● the constitutive relations

σij = Cijklεkl − ekijEk,
Di = eijkεjk + εikEk.

The latter can equivalently be written as

εij = Sijpq (σpq + ekpq)Ek,

Di = Pipqσpq + (Pipqekpq + εik)Ek,

where

Pipq = eiabSabpq.

The triplet (ui, Eij , σij) represents an elastic motion of the body with the
physical properties described by (ρ,Cijkl) that, in general, depend on x ∈ B.
Also, Φ is the electric potential, while Ei andDi denote the electric and induction
vector fields, respectively, that represent a piezoelectric motion of a body with
the properties (eijk, εij) in which eijk and εij are the piezoelectric and dielectric
permeability tensor fields, respectively, also generally depending on x ∈ B. The
latter two tensors possess the following symmetries:

ekij = ekji, εij = εji.

By analogy to elasticity and thermoelasticity, discussed earlier, there are two
basic formulations of the field equations: either in terms of the displacement and
electric potential (i.e. generalising (1.39))(

Cijklu(k,l)
)
,j + ekijΦ,kj + bi = ρüi,

eikluk,li− εikΦ,ik = 0,

or in terms of the stress and electric potential (i.e. generalising (1.43)):(
ρ−1σ(ik,k

)
,j) −Sijklσ̈kl + PsijΦ̈s = 0,

(Pipqσpq) ,i− [(Pipqekpq + εik)Φ,k ] ,i = 0.

The internal energy is

u (ε,E) =
1
2
εijCijklεkl +

1
2
EiεikEj ,

which, by a Legendre transformation, leads to an expression for the free energy,
then explicitly showing the coupling of mechanical with electrical fields.

The piezoelectricity may be generalised to thermo-piezoelectricity along the
lines of thermoelasticity models of either parabolic or hyperbolic types, with a
dissipation function appearing accordingly. Thermo-magnetoelasticity and other
mechanical-electromagnetic models may be formulated in analogous ways.

1.6 Inelastic Materials

1.6.1 Damage

In order to grasp an anisotropic damage state, the classical (deterministic)
continuum damage mechanics (CDM) makes use of fabric tensors in a manner
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Figure 1.3 (a) Random crack field; (b) distribution of n on the unit sphere;
(c) random ellipse field with a single ellipse (with semi-axes b, a) showing the
(m,n) pair for determination of the fabric tensor.

borrowed from the mechanics of granular media (Lubarda & Krajcinovic 1993;
Murakami 2012; Ganczarski, Egner & Skrzypek 2015). First, there is a random
field of cracks (Figure 1.3(a)), each specified by an orientation vector n (i.e. a
unit vector normal to the crack), which is analogous to a field of grain-grain
contacts, each described by n. With reference to Figure 1.3(b), for a system in
3D (2D), one introduces a probability density function of n on a unit sphere S2

(respectively, on a circle)

p (n) = D0 +Dijfij (n) +Dijklfijkl (n) + . . .

This is a generalised Fourier series with respect to the irreducible tensor bases

fij (n) = ninj −
1
3
δij

fijkl (n) = ninjnknl −
1
7
(δijnknl + δiknjnl + δilnjnk + δjkninl

+ δjlnink + δklninj) +
1

5 × 7
(δijnknl + δiknjnl + δilnjnk),

while

D0 =
1
4π

∫
S2
p (n) dΩ, (1.73a)

Dij =
1
4π

3 × 5
2

∫
S2
p (n) fij (n) dΩ, (1.73b)

Dijkl =
1
4π

3 × 5 × 7 × 9
2 × 3 × 4

∫
S2
p (n) fijkl (n) dΩ, (1.73c)

are the scalar, second-order, fourth-order, damage tensors (respectively, fabric
tensors), describing the directional distribution of damage state (grain–grain con-
tacts). Thus, the overall directional distribution of damage state of a material is
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described through the tensors D0, Dij , Dijkl, . . . , just as the overall distribution
of contacts is characterised in a granular medium. Depending on the specific
choice of the constitutive model, either just one (D0), or two, or more damage
tensors are included in the analysis.

This picture of CDM corresponds to smoothing of the morphology within
the RVE (recall Subsection 1.1.1) by assuming a random field of cracks of infi-
nite extent at the continuum point of the macroscopic continuum model. This
‘separation of scales’ assumption may, and should be, abandoned in favour of
treating the continuum point as the SVE: the function ξ (n) possesses mesoscale
fluctuations, so that D0, Dij , Dijkl are rank 0, 2 and 4 TRFs.

In continuum mechanics, damage is interpreted as a decrease in elasticity prop-
erty consequent to a decrease of the areas transmitting internal forces, through
the appearance and subsequent growth of microcracks and microcavities. The
oldest measure of damage set up on the scale of RVE is a scalar D accounting
for a loss of cross-sectional area carrying the stress:

0 ≤ D ≤ 1,

where D = 0 corresponds to a virgin element, while D = 1 to a fully damaged
element. Due to a progressive atomic decohesion and complete loss of a load-
carrying ability, in most materials the total damage/fracture occurs at D < 1,
typically in the range 0.2−0.8. This scalar measure of damage (effectively, D0)
is useful for 1D models and 2D or 3D models where damage is assumed to
occur and/or evolve isotropically. However, the stress and strain field are gen-
erally anisotropic, so that the evolution of damage is anisotropic. Thus, one
has to involve higher-order tensors Dij , Dijkl, . . . from (1.73). A chosen damage
tensor then appears as an argument of the free energy ψ; other arguments of
ψ may include the effects of isotropic/kinematic plastic hardening, e.g. Mau-
gin (1999); Murakami (2012). Proceeding with the TIV formalism, the rate of
Dij (or Dijkl, . . . ) appears as argument of the dissipation function.

However, in order to account for the stochastic, rather than deterministic,
character of response and evolution of material damage, one must note the finite-
size effects in the actual spatial distribution of cracks, which, in turn, implies that
damage tensors are TRFs.

Instead of Dij of (1.73b), one can use formulas that better account for the
shape of the crack such as, say, it being an elliptical void:

Dij =
π

A

∑
k

(a2ninj + b2mimj)(k).

Here a and b are the semi-axes of an ellipse and the summation is carried
out over all the voids within a given domain, Figure 1.3(c). Counterintuitive
properties of the cross-correlation of Dij with a random anti-plane elastic-
ity tensor Cij , both taken on the same mesoscale, have been reported in
Ostoja-Starzewski (2008).
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1.6.2 Perfect Plasticity

One of the simplest dissipative material models is that of perfect plasticity. In
the case of the continuum model set on the scale of a very large (theoretically
infinite) number of grains, assuming their statistics possess the statistical spatial
homogeneity and isotropy, the Huber–von Mises–Hencky yield condition may be
applicable

1
2
σ′
ijσ

′
ij = k2,

where k is the yield stress in shear. Taking k to be a (scalar) random field is
analogous to taking, say, the conductivity tensor to be isotropic (i.e. Cij = Cδij)
everywhere, with C being a scalar random field.

In the case of othrotropy of individual crystals and their yield being indepen-
dent of the mean stress σ(1), the six-parameter Hill’s condition is applicable

F (σ22 − σ33)
2 +G (σ33 − σ11)

2 +H (σ11 − σ22)
2

+ 2Lσ2
23 + 2Mσ2

31 + 2Nσ2
12 = 1,

for which, in principle, all six coefficients can be determined by experimental (or,
using appropriate micromechanics, computational) tests.

The general form of an anisotropic yield condition for perfect plasticity (dating
back to von Mises) is known to have the form

σijAijklσkl = 1.

Here the tensor of plastic moduli Aijkl has the same major and minor symmetries
as the stiffness tensor, i.e. Aijkl = Ajikl = Aijlk = Aklij and, hence, has 21
components. While extensive discussions of these and many other models exist
in the literature, e.g. Skrzypek & Ganczarski (1999), this model may apply on a
mesoscale (SVE level) involving a finite number of crystal grains, as indicated by
Figure 0.1(b), with Aijkl being a TRF. Again, the larger is the SVE, the weaker
is the randomness and the closer is the response to that on the macroscopic
(RVE) level.

The same considerations apply to soil plasticity (Houlsby & Puzrin 2007),
perhaps even more so than to metals, because statistical aspects of soils and
foundations are even more pronounced than in metals.

1.7 Generalised Continuum Theories

1.7.1 Basic Concepts of Micropolar Theories

There are many ways in which classical continuum theories may be generalised;
see Maugin (2017) for a compact, yet very readable, presentation of multifar-
ious avenues. One of the oldest generalisations comprises so-called micropolar
theories. We briefly introduce that theory because tensor-valued random fields
of micropolar type are introduced in Chapter 4.
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Force transfer and degrees of freedom

Dating back to Cosserat & Cosserat (1909), that approach admits the presence
of moment-tractions in addition to force-tractions acting on any infinitesimal
surface element. To be fully consistent with kinematics, each continuum point
is endowed with three rotations ϕi (i = 1, . . . , 3) (or ϕ) in addition to three
displacements ui (i = 1, . . . , 3) (or u). Thus, each point has six degrees of freedom
and the micropolar (Cosserat) theory is seen as a continuum generalisation of a
rigid body, just like a classical (Cauchy) theory is a generalisation of points of
zero size. With u and ϕ being, in general, independent functions of position and
time, ϕ is not the same as the macro-rotation given by the gradient of u

ϕi �=
1
2
εijkuk,j (1.74)

Restricting attention to small deformations, the kinematics of a continuum point
is described by two tensors

strain: γji = ui,j −εkjiϕk, torsion-curvature: κji = ϕi,j , (1.75)

which, in general, are non-symmetric.
While the classical (or Cauchy) continuum mechanics relies on the force

stress concept as the only interaction between contiguous material particles, the
micropolar continuum also involves a couple stress concept. Mathematically, the
latter is an adaption of the former, and this is seen as follows. First, upon taking
a finite surface area ΔA (= L2), defined by an outer unit normal n, and a force
ΔF acting on ΔA, one takes the limit of the ratio of ΔF to ΔA

lim
ΔA→0

ΔF (n)

ΔA
= t(n). (1.76)

It is the basic postulate of continuum mechanics that such a limit is well defined,
i.e. that it is finite except the singularity points in the body, such as crack
tips. Next, considering the force balance on a Cauchy tetrahedron, one finds a
force–stress tensor τ as a linear mapping from n into t(n)

t(n) = τ · n or t
(n)
i = τji · nj . (1.77)

The symbol τji is employed to now indicate a generally non-symmetric Cauchy
stress, in contradistinction to the symmetric Cauchy stress σji introduced
in (1.17).

While the global and local forms of conservation of linear momentum –
expressed, respectively, by (1.17) and (1.18) – carry through, the angular momen-
tum equations change. First, in a micropolar (or Cosserat) continuum, one
proceeds by analogy to (1.76) to define a moment traction from a surface couple
(moment) ΔM acting on ΔA:

lim
ΔA→0

ΔM (n)

ΔA
= m(n), (1.78)
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Figure 1.4 A granular medium (a) carrying force and moment tractions, is
represented as a micropolar continuum point (b) within a macroscopic model
of a geological formation (c)

leading to, now by analogy to (1.77), a couple-stress tensor μ as a linear mapping
from n into m(n)

m(n) = μ · n or m
(n)
i = μji · nj . (1.79)

In Figure 1.4 both t(n) and m(n) are shown acting on one face of SVE, a dV
element of the macroscopic micropolar (and inhomogeneous) continuum. Then,
the conservation of angular momentum (1.19) needs to include the contributions
of body and surface couples, leading to the local form

εijkτjk + μji,j + Yi = Iij ϕ̈. (1.80)

The linear and angular momentum balance laws may also be obtained from
the invariance of energy balance under the Galilean group of transformations
(Eringen 1999; Nowacki 1975). A modern discussion of the modelling based on
generalised continua can be found in dell’Isola, Seppecher & Della Corte (2015).

Micropolar elasticity

Clearly, (τij , γij) and (μij , κij) are conjugate pairs. Assuming a micropolar
material of linear elastic type, its energy density is given by a quadratic form

u =
1
2
γijC

(1)
ijklγkl +

1
2
κijC

(2)
ijklκkl,

so that Hooke’s law is generalised from (1.33) to

τij = C(1)
ijklγkl μij = C(2)

ijklκkl. (1.81)

Here C(1)
ijkl and C(2)

ijkl are two micropolar stiffness tensors. Note that, due to the
assumption of energy density u, we have the major symmetry of both stiffness
(and hence, compliance) tensors

C
(1)
ijkl = C(1)

klij C
(2)
ijkl = C(2)

klij .
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However, the two minor symmetries of (1.35) (ijkl ↔ jikl ↔ ijlk) do not hold
since the tensors τij and γij as well as μij and κij are, in general, non-symmetric.
Indeed, this is the reason for calling this theory an asymmetric elasticity by
Nowacki (1986). The inverse of (1.81) is written as

γij = S(1)
ijklτkl κij = S(2)

ijklμkl.

In principle, the energy density of linear micropolar elasticity is written most
generally as

u =
1
2
γijC

(1)
ijklγkl + γijC

(3)
ijklκkl +

1
2
κijC

(2)
ijklκkl,

in which the mixed term accounts for thenon-centrosymmetric (chiral) effects,
essentially due to some helical microstructure. This is seen more explicitly from

τij = C(1)
ijklγkl + C

(3)
ijklκkl μij = C(3)

ijklγkl + C
(2)
ijklκkl,

which replaces (1.81).
We end this subsection by noting that, just like in classical elasticity, we can

express a micropolar field problem in displacements and rotations or in stresses
and couple-stresses (Nowacki 1986).

1.7.2 Local versus Non-Local Continuum Mechanics

Elasticity

Following Bažant & Jirásek (2002), with reference to (1.1), we recall the funda-
mental equation of the continuum physics theory. Typically, u and f are tensor
fields over a certain spatio-temporal domain D×T . The next step is the locality
condition: ‘The operator L is called local if, for two functions u and v identical
on an open set O ⊂ D, their images Lu and Lv are also identical in O.’ Equiv-
alently, we can say that whenever u (x) = v (x) for all x in a neighbourhood
of point x0, then Lu (x0) = Lv (x0). Clearly, differential operators satisfy this
condition because the derivatives of an arbitrary order do not change if the dif-
ferentiated field changes only outside a small neighbourhood of the point where
a derivative is taken.

Let us first consider the 1D local elasticity described by

− d

dx

[
E (x)

d

dx
u (x)

]
= f (x) . (1.82)

It is easily verified that the locality condition is satisfied here. Also note that
(1.82) combines three relations:

strain-displacement ε (x) =
d

dx
u (x) , (1.83a)

equilibrium
d

dx
σ (x) + f (x) = 0, (1.83b)

constitutive equation σ (x) = E (x) ε (x) . (1.83c)
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On the other hand, in non-local elasticity (1.83c) is replaced by

σ (x) =
∫ ∞

−∞
E (x, ξ)u (ξ) dξ, (1.84)

where E (x, ξ) is the kernel of the elastic integral operator. It generalises the
notion of conventional (local) elastic modulus. The resulting generalisation of
(1.82) is

− d

dx

[∫ ∞

−∞
E (x, ξ)

du

dx
(ξ) dξ

]
= f (x) . (1.85)

Due to the presence of spatial integral, the locality condition is violated, unless
the elastic kernel has the degenerate form E (x, ξ) = E(x)δ (x− ξ), whereby the
local/classical elasticity is recovered.

This would suggest that the local theories are described by differential equa-
tions, whereas the non-local theories by integro-differential ones. In general,
continuum models for solids can be divided into:

1. strictly local models, encompassing non-polar simple materials;
2. weakly non-local models, encompassing polar theories (micropolar, microstretch,

micromorphic, multipolar) and gradient theories;
3. strongly non-local models, encompassing those of the integral type above.

Before we introduce some of these particular models in some detail, we extend
the non-local model from 1D to 3D. Working within a linear small-strain assump-
tion, an elasticity theory can be derived from the hypothesis that the elastic
energy is a quadratic functional:

W =
1
2

∫
D

∫
D
εij (x)Cijkl (x, ξ) εkl (ξ) dxdξ. (1.86)

Observe that this is in contradistinction to the local elasticity where the total
energy can be expressed as a spatial integral depending only on the local value
of strain. Thus, only if C (x, ξ) = C (x) δ (x− ξ), does (1.86) reduce to

W =
1
2

∫
D
εij (x)Cijkl (x) εkl (x) dx.

Many particular models as well as more general theories (possibly with dissipa-
tion) have been, and continue to be, discussed in the literature.

The ensemble average of a random local medium is non-local

As pointed out in Section 1.1, the exact solution of the average of a field
problem governed by a linear random (and local) operator on the domain B
follows from (1.4). The operator

〈
L−1

〉−1 is a deterministic and non-local. This
was illustrated in terms of a Fourier-type heat conduction problem, a result
which immediately carries over to anti-plane elasticity. Moving to a general set-
ting of linear elastostatics on the random field of a fourth-rank stiffness tensor
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Cijkl = {Cijkl (ω,x) ;ω ∈ Ω,x ∈B}, the equations governing the average fields
in a Cauchy-type continuum are (Beran & McCoy 1970a)

〈σij (x)〉,j = 0 (1.87a)

〈σij (x)〉 =
∫
B
Λijkl (x,x′) 〈εkl (x′)〉 dx′ (1.87b)

〈εkl〉 = (〈uk,l〉 + 〈ul,k〉) /2. (1.87c)

In (1.87b) Λijkl (x,x′) is an infinite sum of integro-differential operators,
involving the moments of all orders of the random field Cijkl

Λijkl (x,x′) = [〈Cijkl〉 +Dijkl (x′)] δ (x− x′) + Eijkl (x,x′) + . . . , (1.88)

where Dijkl (x′) and Eijkl (x,x′) are functions of the statistical properties of
Cijkl and the free-space Green’s function of the non-statistical problem. Addi-
tion of a deterministic body force field fi does not change the results. When
the fluctuations in Cijkl are small, Dijkl (x′) and Eijkl (x,x′) may be evaluated
explicitly, and this was done by Beran & McCoy (1970a) and Beran & McCoy
(1970b) in the special case of the realisations Cijkl (ω) being locally isotropic,
i.e. expressed in terms of a “vector” random field of two Lamé coefficients
{[λ (ω,x) , μ (ω,x)] ;ω ∈ Ω,x ∈B}; recall the Introduction.

Next, considering this random field to be statistically homogeneous and mean-
ergodic, one may disregard the contributions of this operator for |x− x′| > lc
(the correlation length). Thus, since only the neighbourhood within the distance
lc of x has a significant input into the integral (1.87b), one may expand 〈εkl (x′)〉
in a power series about x

〈εkl (x′)〉 = 〈εkl (x)〉 + (x′m − xm) 〈εkl (x)〉,m

+
(x′m − xm) (x′n − xn)

2
〈εkl (x)〉,mn . . .

so as to obtain from (1.87) and (1.88)

〈σij (x)〉 =
∫
B
Λijkl (x,x′) dx′ 〈εkl (x)〉

+
∫
B
Λijkl (x,x′) (x′m − xm) dx′ 〈εkl (x)〉,m + . . .

This, in turn, can be rewritten as a sum of local, plus first gradient, plus higher
gradient strain effects

〈σij〉 = C∗
ijkl 〈εkl〉 +D∗

ijklm 〈εkl〉,m + E∗
ijklmn 〈εkl〉,mn + . . .

Thus,
∫
B Λijkl (x,x

′) dx′ in (1.87) is recognised as the effective stiffness C∗
ijkl,

indeed the stiffness of a single realisation B (ω) of the random material B. It fol-
lows that, for a given random medium B, one may determine the microstructural
statistics, and hence the higher-order approximations D∗

ijklm, E∗
ijklmn, . . .
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1.8 Concluding Remarks

Using a common perspective of TIV, we have attempted to introduce a range
of continuum theories: from classical (Cauchy-type), single- and multi-field, to
generalised, such as micropolar (Cosserat-type) and nonlocal. Precisely due to
the presence of the dissipation function, this approach can also bridge down
to statistical physics involving nanoscale violations of the Second Law of ther-
modynamics. In all these theories and countless other possibilities, the key
role is played by the tensor fields of dependent quantities and constitutive
responses, which are generally anisotropic and spatially inhomogeneous. This
is the motivation for admitting the spatial randomness of tensor-valued random
fields.



2

Mathematical Preliminaries

In this chapter, we review mathematical tools that are necessary to solve our
problems. We start from a review of Linear Algebra. Two things are important
here. First, a specialist in applied mathematics or physics usually understands
‘linear space’ as a set of rows or columns that contain numbers. We found that it
is easier to formulate and to start to solve a problem in a coordinate-free form.
Later, one chooses the most convenient coordinate system to write down the
answer.

Second, there exist many equivalent definitions of tensors. We found that ini-
tially it is convenient to use Definitions 1 and 2 and even the most abstract
Theorem 1 to define the tensor product of linear spaces rather than the classical
physical Definition 3.

Material in topology, groups and group actions is standard. We would like to
mention Example 7, where we consider the so-called ‘classical groups’ that play
an important rôle later.

Group representations are familiar to all physicists. We consider orthogonal
tensor representations of compact topological groups as a particular case of group
actions. Especially we are interested in their matrix entries and Clebsch–Gordan
coefficients.

A connection between the theory of homogeneous and isotropic random fields
and classical invariant theory has been known since the 1930s. The reason for
that is as follows. Physically interesting random fields take values in subspaces of
tensors that are invariant under the natural action of a permutation group in the
space of all tensors of a fixed rank, in particular, in spaces of symmetric tensors.
On the other hand, the space of symmetric tensors is naturally isomorphic to the
space of homogeneous polynomials; see Equation (2.10) below. Therefore, homo-
geneous polynomial mappings that intertwine different group representations, are
important. It is the classical invariant theory that studies the above described
polynomial mappings. We pay special attention to symmetric isotropic tensors
and symmetric covariant tensors. Many of them were introduced by the authors.
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Many integrals that arise in studies of homogeneous and isotropic random
fields, contain a function that takes values in a convex compact subset of a finite-
dimensional real linear space. The geometry of the above set, in particular, the
structure of the set of its extreme points, determines the spectral expansion of the
field: the simpler the set of extreme points is, the simpler the spectral expansion
is. We review the theory of convex compacta in Section 2.8.

In Section 2.9 we review the theory of homogeneous tensor-valued random
fields. A special rôle is played by Theorem 10, which completely describes the
class of such fields. The above theorem is the starting point of our research in
Chapter 3.

The results of integration in the theory of homogeneous and isotropic random
fields often contain special functions. We describe the necessary functions in
Section 2.10.

2.1 Linear Spaces

In this section we review some results in Linear Algebra. Each result appears
first in a coordinate-free form, then in a coordinate-dependent setting.

2.1.1 Forms

Let F be either the field R of real numbers or the field C of complex numbers. Let
V be a finite-dimensional linear space over F. In particular, let F1 denote the one-
dimensional linear space over F. A linear form on V is a function v∗ : V → F1

satisfying the following condition

v∗(αv + βw) = αv∗(v) + βv∗(w), v,w ∈ V, α, β ∈ F.

The set V ∗ of all linear forms on V is a linear space (the dual space to V ). The
addition of linear forms is defined as

(v∗ +w∗)(v) := v∗(v) +w∗(v),

while the multiplication of a linear form v∗ by a scalar α ∈ F is defined as

(αv∗)(v) := αv∗(v).

The spaces V and V ∗ have the same dimension and therefore must be isomorphic.
However, there exists no natural isomorphism between a space and its dual, see
Section 2.11.

In what follows we write 〈v∗,v〉 = v∗(v) for v∗ ∈ V ∗ and v ∈ V .
In a coordinate form, let m be the dimension of the space V , and let

{e1, . . . ,em} be a basis of V . Specify a vector v ∈ V by its coordinates v1,
. . . , vm in the above basis:

v =
m∑
i=1

viei. (2.1)
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In what follows, we use the Einstein summation convention: whenever an index
variable appears twice in a single term it implies summation of that term over
all the values of the index. With this convention, Equation (2.1) becomes

v = viei,

or just v = vi when ei is understood. Let ei ∈ V ∗ be the linear functional acting
on the vector (2.1) by 〈ei,v〉 = vi. The functionals {e1, . . . ,em} form a basis of
V ∗, the so-called dual basis with respect to the basis {e1, . . . ,em}. The unique
linear mapping A : V → V ∗ that transforms ei to ei is an isomorphism between
V and V ∗. This isomorphism is not natural but rather accidental : it changes if
the basis {e1, . . . ,em} is changed.

Let V ∗∗ := (V ∗)∗ be the space of linear forms on V ∗, the second dual to V .
Consider the mapping εV : V → V ∗∗ that maps a vector v ∈ V to the linear
form on V ∗ whose value on the element v∗ ∈ V ∗ is equal to 〈v∗,v〉:

εV : v → [v∗ �→ 〈v∗,v〉].

The mapping εV is the natural isomorphism between V and V ∗∗.
Assume that V is a complex vector space. Define the conjugate space V which

has the same vector addition as V but scalar-vector multiplication defined by

C × V → V, (z,v) �→ zv.

Let V and W be two linear spaces. A function A : V ×W → F1 is called a
bilinear form on V ×W if for all v, v1, v2 ∈ V , w, w1, w2 ∈ W , α, β ∈ F we
have:

A(αv1 + βv2,w) = αA(v1,w) + βA(v2,w),

A(v, αw1 + βw2) = αA(v,w1) + βA(v,w2).
(2.2)

The set L(V,W ; F1) of all bilinear forms on V ×W is a linear space with respect to
the obviously defined operations of addition of bilinear forms and multiplication
of a bilinear form by a scalar.

In a coordinate form, let n be the dimension of the space W , and let
{f1, . . . ,fn} be a basis of W . Denote

aij = A(ei,fj).

Using (2.2), we obtain

A(ei, f j) = aije
if j .

The matrix with matrix entries aij is called the matrix of the bilinear form A.
In general, let r be a positive integer, and let V1, V2, . . . , Vr be finite-

dimensional linear spaces over F. A function A : V1 × V2 × · · · × Vr → F1 is
called a multilinear form if for all i, 1 ≤ i ≤ p and for all vj ∈ Vj , j �= i, w1,
w2 ∈ Vi, α, β ∈ F we have
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A(v1, . . . ,vi−1, αw1 + βw2,vi+1, . . . ,vr)

= αA(v1, . . . ,vi−1,w1,vi+1, . . . ,vr)

+ βA(v1, . . . ,vi−1,w2,vi+1, . . . ,vr).

The set L(V1, V2, . . . , Vr; F1) of all multilinear forms on V1 × V2 × · · · × Vr is
a linear space with respect to the obviously defined operations of addition of
bilinear forms and multiplication of a bilinear form by a scalar.

A bilinear form B : V × V → F1 is called non-degenerate if B(v,w) = 0 for
all w ∈ V implies that v = 0 and B(v,w) = 0 for all v ∈ V implies that w = 0.
It is called symmetric if B(v,w) = B(w,v).

Let V be a vector space over R. A bilinear form B : V × V → R is called
positive definite if B(v,v) > 0 for every v ∈ V with v �= 0. An inner product on
V is a symmetric, non-degenerate and positive definite bilinear form. The value
of the inner product on the vectors v and w is denoted by (v,w).

Every inner product determines an isomorphism between V and V ∗ associating
with every vector w ∈ V a linear form w∗ : v → (v,w).

Let V be a vector space over C and let I be the identity operator in V . A real
structure on V is a mapping J : V → V that satisfies the following conditions:

J(αv + βw) = αJ(v) + βJ(w), α, β ∈ C, v,w ∈ V,

J2 = I.

In coordinates, a mapping

J(α1e1 + · · · + αmem) := α1e1 + · · · + αmem

is a real structure on V .
Later on we need also a quaternionic structure. This is a mapping J : V → V

that satisfies the following conditions:

J(αv + βw) = αJ(v) + βJ(w), α, β ∈ C, v,w ∈ V,

J2 = −I.

A function B : V × V → C is called a Hermitian form if for all α, β ∈ C, v,
w, w1, w2 ∈ V

B(v, αw1 + βw2) = αB(v,w1) + βB(v, αw2),

B(v,w) = B(w,v).

A Hermitian inner product is a non-degenerate positive definite Hermitian form
(v,w) on V . For every Hermitian linear product and every real structure J ,
we have a non-degenerate bilinear form (Jv,w) that determines an isomor-
phism between V and V ∗ associating with every vector w ∈ V a linear form
w∗ : v → (Jv,w).

2.1.2 Tensors

An important particular case of a bilinear form is as follows.
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Definition 1. The tensor product V ⊗W of linear spaces V and W is the linear
space L(V ∗,W ∗; F1). The tensor product v⊗w of the vectors v ∈ V and w ∈W

is the element of the space V ⊗W acting by

v ⊗w(v∗,w∗) := 〈v∗,v〉〈w∗,w〉, v∗ ∈ V, w∗ ∈W.

A rank 2 tensor is an element of the tensor product V ⊗W .

In a coordinate form, a rank 2 tensor A is a matrix with elements

aij := A(ei,f j).

The tensor product of the vectors vi and f j is aij = vif j .
Let τ be the linear operator acting from V ×W to V ⊗W by

τ(v,w) := v ⊗w.

Theorem 1 (The universal mapping property). The pair (V ⊗W, τ) satisfies
the universal mapping property: for any linear space X and bilinear map β : V ×
W → X, there exists a unique linear operator B : U⊗V → X such that β = B◦τ :

V ×W

β
����

���
���

���
τ �� V ⊗W

B

��
X

(2.3)

In other words, the diagram (2.3) is commutative: all directed paths in
the diagram with the same start and endpoints lead to the same result by
composition.

Example 1. As a first application of Theorem 1, put X = L(V,W ). For any
(v∗,w) ∈ V ∗ ×W , let Bv∗,w be the rank-one linear operator:

Bv∗,w(v) := 〈v∗,v〉w, v ∈ V.

The map β(v∗,w) := Bv∗,w from V ∗×W to L(V,W ) is bilinear. By Theorem 1,
there is a unique linear mapB : V ∗⊗W → L(V,W ) such thatB(v∗⊗w) = Bv∗,w.
In other words, B is a natural isomorphism between the spaces V ∗ ⊗ W and
L(V,W ).

In a coordinate form, we have B(vi ⊗wj)vk = 〈vi,vk〉wj .

Let V , W , X and Y be finite-dimensional linear spaces, let A ∈ L(V,X) and
let B ∈ L(W,Y ). The tensor product of linear operators, A ⊗ B, is a unique
element of the space L(V ⊗W,X ⊗ Y ) such that

(A⊗B)(v ⊗w) := A(v) ⊗B(w), v ∈W, w ∈W.

Definition 2. The r-fold tensor product V1 ⊗ V2 ⊗ · · · ⊗ Vr is the linear space
L(V ∗

1 , V
∗
2 , . . . , V

∗
r ; F1). The r-fold tensor product v1⊗v2⊗· · ·⊗vr of the vectors
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v1 ∈ V1, v2 ∈ V2, . . . , vr ∈ Vr is the element of the space V1 ⊗ V2 ⊗ · · · ⊗ Vr
acting by

v1 ⊗ v2 ⊗ · · · ⊗ vr(v∗1 ,v∗2 , . . . ,v∗r ) := 〈v∗1 ,v1〉〈v∗2 ,v2〉 · · · 〈v∗r ,vr〉

for all 1 ≤ i ≤ r and for all v∗i ∈ V ∗
i . A rank r tensor is an element of the r-fold

tensor product V1 ⊗ V2 ⊗ · · · ⊗ Vr. By convention, the 0-fold tensor product of
the empty family of linear spaces is equal to F1.

In a coordinate form, a rank r tensor A is an r-dimensional array with elements

ai1i2···ir := A(ei1 ,ei2 , . . . ,eir ).

The universal mapping property relative to r-linear maps is as follows: if W is
a vector space and β : V1×V2×· · ·×Vr →W is an r-linear map (i.e. linear in each
argument), then there exists a unique linear map B : V1⊗V2⊗· · ·⊗Vr →W such
that B(v1 ⊗ v2 ⊗ · · · ⊗ vr) = β(v1,v2, · · · ,vr). In other words: the construction
of the tensor product of linear spaces reduces the study of multilinear mappings
to the study of linear ones.

Let V1, . . . , Vr, W1, . . . , Wr be finite-dimensional linear spaces, and let Ai ∈
L(Vi,Wi) for 1 ≤ i ≤ r. The tensor product of linear operators, A1 ⊗ · · · ⊗ Ar,
is a unique element of the space L(V1 ⊗ · · · ⊗ Vr,W1 ⊗ · · · ⊗Wr) such that

(A1 ⊗ · · · ⊗Ar)(v1 ⊗ · · · ⊗ vr) := A1(v1) ⊗ · · · ⊗Ar(vr), vi ∈ Vi.

If all the spaces Vi, 1 ≤ i ≤ r, are copies of the same space V , then we write
V ⊗r for the r-fold tensor product of V with itself, and v⊗r for the tensor product
of r copies of a vector v ∈ V . Similarly, for A ∈ L(V, V ) we write A⊗r for the
r-fold tensor product of A with itself.

Denote Tpq(V ) := V ⊗p ⊗ (V ∗)⊗q and call this linear space the space of mixed
tensors of type (p, q) relative to V . By our convention, T0

0(V ) := F1.
In a coordinate form, let {e1, . . . ,em} be a basis of V , and {e1, . . . ,em} be a

dual basis of V ∗. Let Aij be the matrix describing the change of basis in V :

e′j = Aijej , (2.4)

and let Bij be the matrix of transformation from the basis {e1, . . . ,em} to the
basis dual to {e′1, . . . ,e′m}. The tensors

{ei1 ⊗ · · · ⊗ eiq ⊗ ej1 ⊗ · · · ⊗ ejp : 1 ≤ ik, j� ≤ m } (2.5)

form a basis in the space Tpq(V ).

Definition 3. A tensor T ∈ Tpq(V ) is a mapping which associates with each
basis of V a family of scalar components T j1···jpi1···iq . Under the transformation (2.4)
given by its coordinates in the basis the components of the tensor transform by

T
′j1···jp
i1···iq = Ak1i1 · · ·Akq

iq
T
�1···�p
k1···kq

Bj1�1 · · ·B
jp
�p
.
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In particular, the elements of the space F1 = T0
0(V ) are scalars, the elements

of the space V = T1
0(V ) are vectors, the elements of the space V ∗ = T0

1(V ) are
covectors, the elements of the space L(V ) = T1

1(V ) are matrices. In what follows,
we denote scalars (rank 0 tensors) by small Greek letters α, β, . . . , vectors and
covectors (rank 1 tensors) by small bold italic Latin letters v, w, . . . , matrices
and other rank 2 tensors by capital Latin letters A, B, . . . , tensors of rank 3 or
more or of arbitrary rank by capital bold italic sans serif Latin letters S, T , . . . ,
if the above does not conflict with traditional physical notation.

The tensor contraction is a unique linear form C ∈ (V ∗ ⊗ V )∗ such that
〈C,v∗ ⊗ v〉 = 〈v∗,v〉. Let B : V ∗ ⊗ V → L(V ) be the natural isomorphism
between V ∗ ⊗ V and L(V ) constructed in Example 1. The trace of a lin-
ear operator A ∈ L(V ) is defined by trA = CB−1A, or by a commutative
diagram:

V ∗ ⊗ V
C ��

B

��

F1

L(V )
tr

�����������

(2.6)

In a coordinate form, the matrix entries of the linear operator A are aji =
〈ei ⊗ ej , A〉. Then

〈C,A〉 = aii,

the usual definition of the trace.
In what follows, our real linear spaces are always equipped with an inner

product, while complex linear spaces are always equipped with a Hermitian inner
product and a real structure. Therefore, we have an isomorphism between a linear
space V and its dual, V ∗, and do not care about the difference between upper
and lower indices in tensors. We adopt the following convention: an index is a
tensor index if and only if it is lower (if this does not contradict to the traditional
physical notation).

If (·, ·)i is a (Hermitian) inner product on the space Vi, 1 ≤ i ≤ m, then there
exists a unique (Hermitian) inner product (·, ·) on V1 ⊗ V2 ⊗ · · · ⊗ Vm such that
for all vi, wi ∈ Vi, 1 ≤ i ≤ m, we have

(v1 ⊗ · · · ⊗ vm,w1 ⊗ · · · ⊗wm) = (v1,w1)1 · · · · · (vm,wm)m.

2.2 Topology

Let X be a non-empty set. A family O of subsets of X is called a topology if
∅ ∈ O, X ∈ O, every union of sets of O and the intersection of any two sets
from O are sets of O. The pair (X,O) is called a topological space. The sets from
O are called open.
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Example 2. Consider a finite-dimensional linear space V . Let (·, ·) be a
(Hermitian) inner product in V , and let ‖·‖ be the corresponding norm:

‖v‖ :=
√

(v,v).

Declare a subset O ⊆ V open, if it is either empty or for any v ∈ O there exists
a positive real number ε = ε(v) such that the open ball

B(v, ε) := {w ∈ V : ‖w − v‖ < ε }

is a subset of O.

A neighbourhood of a point x ∈ X is any subset of X which contains an open
set containing x. A subset of X is called closed if its complement is open. An
intersection of any family of closed sets is closed. The closure of a set A is the
intersection of all closed sets containing A.

The interior of A is the union of all open sets containing in A. The boundary
of A is the set of all points in the closure of A that do not belong to the interior
of A.

A mapping f of a topological space X into a topological space Y is called
continuous if the inverse image under f of every open subset of Y is an open
subset of X.

Let A be a subset of a topological space X. The topology induced on A by the
topology of X is the family of intersections with A of open sets of X. The set A
with this topology is called a subspace of X.

A base of the topology of a topological space X is any set C of open sets of X
such that every open set in X is the union of sets in C.

Let X and Y be two topological spaces. By definition, the product topology
on the Cartesian product X × Y has as a base the set of finite intersections of
Cartesian products of an open set of X with an open set in Y .

A topological space X satisfies the Hausdorff separation axiom if any two
different points in X can be separated by disjoint open sets. For example, the
topological space V of Example 2 is Hausdorff. From now on we consider only
Hausdorff topological spaces. It is easy to see that a finite topological space X
is Hausdorff if and only if the topology of X is discrete, i.e. all subsets of X are
open.

The following definition is a little bit abstract, therefore we first consider its
simplified version. A subspaceK of the topological space V of Example 2 is called
compact if any sequence of points in K contains a subsequence that converges
to a point in K.

It is possible to prove that K is compact if and only if every covering of K by
open sets contains a finite covering of K. The following general definition follows:
a topological space K is compact if every covering of K by open sets contains a
finite covering of K. A topological space X is called locally compact if any point
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in X has a neighbourhood with compact closure. The space V of Example 2 is
not compact, but is locally compact.

A topological space X is called connected if it is not the union of two disjoint
non-empty open sets. The connected component of a point x in the space X is
the union of all connected subspaces which contain x. The topological space V
of Example 1 is connected.

Two particular kinds of topological spaces will play an important rôle later on.

2.2.1 Real-Analytic Manifolds

Letm be a positive integer, and let U and V be two subsets in Rm. Let ϕ : U → V .
Then ϕ may be written as

y1 = ϕ1(x1, . . . , xm), . . . , ym = ϕm(x1, . . . , xm).

Assume that these functions are real-analytic.
Let M be a set. A chart in M is a pair (U,ϕ), where U ⊆ M , and ϕ is a

one-to-one map from U to an open set ϕ(U) ⊆ Rm. For any charts (Uα, ϕα) and
(Uβ , ϕβ) with Uα ∩ Uβ �= ∅, consider the mapping

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ),

which is called a chart change. A family { (Uα, ϕα) : α ∈ A } of charts on M is
called an analytic atlas if:

● Uα form a covering of M ;
● both the domain and the range of any chart change are open subsets of Rm;
● any chart change is real-analytic.

The set of all analytic atlases is partially ordered by inclusion. Any atlas A
is contained in a unique maximal atlas Amax with respect to the above partial
ordering. Any maximal atlas Amax is called an analytic structure on M . A pair
(M,Amax) is called a real-analytic manifold. In what follows we consider only
real-analytic manifolds and call them just manifolds.

Introduce a topology in M by declaring a subset O ⊆M open, if for any chart
(U, h) of the maximal atlas the set h(O ∩ U) is open in Rm. In what follows we
assume that the above topology satisfies the Hausdorff separation axiom.

Let M1 and M2 be two manifolds, and let f : M1 → M2. The mapping f is
called real-analytic if for any chart (U1, ϕ1) of M1 and for any chart (U2, ϕ2) of
M2 with f(M1) ∩ U2 �= ∅, the mapping ϕ−1

1 ◦ f ◦ ϕ2 is real-analytic.
Let x be a point in the domain U of a chart (U,ϕ) of a manifold M , and let

ϕ : U → Rm. The number m is called the local dimension of the manifold M at x.
The local dimension does not depend on the choice of a chart and is constant on
each connected component of M . The above constant is called the dimension of
the component.
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Example 3. The identity matrix in Rm is an analytic atlas of Rm. The
corresponding maximal atlas determines a real-analytic structure on Rm.

Consider the centred sphere Sm−1 = {x2
1+· · ·+x2

m = 1} of radius 1 in Rm. Two
stereographic projections to the planes xm = ±1 determine an analytic atlas.
The corresponding maximal atlas determines a real-analytic structure on Sm−1.
In particular, the maximal atlas contains a special chart that is familiar under
the name spherical coordinates. The domain of the above chart is a dense open
subset of the sphere. Nevertheless, most calculations successfully use spherical
coordinates as if they would cover all of the sphere.

2.2.2 Stratified Spaces

Let X be a topological space, and let {Mi : i ∈ I } be a partition of X.

Definition 4. The partition {Mi : i ∈ I } is called a stratification if it satisfies
the following conditions:

● it is locally finite, i.e. any compact subset of X intersects only finitely many
sets Mi;

● the sets Mi are connected manifolds;
● for each i ∈ I the closure of Mi is equal to Mi ∪ ∪j∈Ii

Mj , where Ii ⊆ I \ {i},
and dimMj < dimMi for each j ∈Mi.

The pair (X, {Mi : i ∈ I }) is called a stratified space. The sets Mi are called
strata.

Example 4. The sets {0} and E \ {0} are strata of a finite-dimensional real
linear space E.

The sets {0} and (0,∞) are strata of the topological space [0,∞).

2.3 Groups

A group is a set G together with a product, i.e. a mapping G×G→ G, (g1, g2) �→
g1g2, that satisfies the following conditions.

Associativity: (g1g2)g3 = g1(g2g3), g1, g2, g3 ∈ G.
Identity element: there exist e ∈ G such that eg = ge = g for all g ∈ G.
Inverse element: for any g ∈ G, there exists g−1 ∈ G with gg−1 = g−1g = e.

A subgroup of G is a subset H of G such that e ∈ H, g1, g2 ∈ H implies
g1g2 ∈ H, and g ∈ H implies g−1 ∈ H.

The set gH := { gh : h ∈ H } is called the left coset of H in G with respect
to g. Two left cosets either do not intersect or are equal. The set of left cosets is
denoted by G/H.
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For any g ∈ G, and for any subgroup H of G, the set gHg−1 := { ghg−1 : h ∈
H } is a subgroup of G that is called a group conjugate to H. As g runs over G,
the subgroups gHg−1 run over the conjugacy class [H] of the subgroup H. A
subgroup H is called normal if its conjugacy class contains only one element.
For each g1H and g2H ∈ G/H, define their product as

(g1H)(g2H) := { k1k2 : k1 ∈ g1H, k2 ∈ g2H }.

The above operation is well defined, i.e. the result is a left coset and does not
depend on the choice of representatives k1 ∈ g1H and k2 ∈ g2H, associative,
and has identity element H. The inverse of an element gH ∈ G/H is g−1H.
The set G/H together with the above-described product is called a quotient
group.

For any subgroup H of G, the normaliser of H in G is

N(H) = { g ∈ G : gHg−1 = H }.

It is the largest subgroup of G containing H as a normal subgroup.
Let G and H be two groups. A mapping ρ : G → H is called a group

homomorphism if it respects multiplication, i.e.

ρ(g1g2) = ρ(g1)ρ(g2), g1, g2 ∈ G.

For example, the mapping ρ : G→ G/H, that maps an element g ∈ G to the left
coset gH of a normal subgroup H, is a group homomorphism.

A group isomorphism is a one-to-one homomorphism ρ : G→ H such that ρ−1

is a group homomorphism.
A group G is called abelian if gh = hg for all g, h ∈ H.
Let G and H be two groups. The Cartesian product of the sets G×H carries

the group structure defined by the multiplication:

(g1, h1)(g2, h2) := (g1g2, h1h2), g1, g2 ∈ G, h1, h2 ∈ H.

With this multiplication, G×H is the Cartesian product of the groups G and H.
A topological group is a set G which is a group and a topological space such

that the mapping (g, h) �→ g−1h of G×G into G is continuous.
A Lie group is a set G which is a group and a real-analytic manifold such that

the mapping (g, h) �→ g−1h of G×G into G is real-analytic.

Example 5 (Symmetric group). Let r be a positive integer, and let Ω =
{1, 2, . . . , r}. A permutation on Ω is a one-to-one mapping of Ω onto itself. The
symmetric group on r letters is the set Σr of all permutations on Ω with compo-
sition of mappings as the group multiplication. Equipped with discrete topology,
Σr becomes a topological group. Any subgroup of the symmetric group is called
the permutation group.

A permutation σ ∈ Σr is called a cycle of length m if for m distinct numbers
i1, . . . , ir, σ maps ij to ij+1, 1 ≤ j ≤ m− 1, maps im to i1, and leaves all other
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points fixed. This cycle is denoted by (i1 · · · ir). Note that any cycle of length 1
is the identity permutation. A cycle of length 2 is called the transposition.

Two cycles are called disjoint if they do not move a common point. Each
permutation can be written as a product of disjoint cycles. This product is unique
up to the order in which the cycles appear in the product and the inclusion or
exclusion of cycles of length 1. We exclude all cycles of length 1 from the product.

It is easy to see that

(i1 · · · im) = (i1im)(i1im−1) · · · (i1i2).

It follows that each cycle, and therefore every permutation, can be written as
a product of transpositions. This product is not uniquely determined, but the
numbers of transpositions in different products are either all even or all odd. The
permutation is called even (resp. odd) if it may be represented as a product of
even (resp. odd) number of permutations.

Define the homomorphism ε from Σr to the multiplicative group Z2 := {−1, 1}
as follows: ε(σ) = 1 if σ is even and ε(σ) = −1 if σ is odd. The number ε(σ) is
called the sign of the permutation σ.

Example 6. A linear space V together with the operation of vector addition is
an abelian group. It is called the additive group of V .

Example 7 (Classical groups). Let V be a finite-dimensional linear space. The
set of all invertible linear operators from V to V together with composition
of operators is a group with identity element I, where Iv = v for all v ∈ V .
This group is called the general linear group of V and is denoted by GL(V ). The
topology on GL(V ) is induced by the topology on V ⊗V described in Example 2.

In a coordinate form, let n be the dimension of V . The operator A ∈ GL(V )
acts on a vector v = viei as

(Aviei)j = ajiv
iej , 1 ≤ j ≤ n.

The numbers aji ∈ F are called the matrix entries of A with respect to the basis
{e1, . . . ,en } for V . The group of all n × n invertible matrices with coefficients
in F is called the general linear group of rank n and is denoted by GL(n,F).
The mapping μ : GL(V ) → GL(n,F) that maps A ∈ GL(V ) to the matrix with
entries aij is a group isomorphism.

The group GL(n,F) has two connected components. The connected component
of the identity matrix δij is the set of all matrices with positive determinant,
while the second connected component is the set of all matrices with negative
determinant.

The special linear group of rank n, SL(n,F) is the set of all matrices A such
that det(A) = 1. The group SL(V ) := μ−1(SL(n,F)) is independent of the choice
of basis and is called the special linear group of V . Both groups are connected.
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Let F = R. The set O(V ) of all g ∈ GL(V ) such that (gv, gw) = (v,w) for all
v, w ∈ V , is a subgroup of GL(V ), it is called the orthogonal group of V . This
group has two connected components. The connected component of the identity
operator is the special orthogonal group of V , SO(V ) := O(V ) ∩ SL(V ). Both
O(V ) and SO(V ) are compact topological groups.

In a coordinate form, O(n) := μ(O(V )) is the set of n × n matrices A with
AA� = I, the orthogonal group of rank n. The elements of O(n) are orthogonal
matrices. The connected component of the identity matrix, SO(n) := μ(SO(V )),
is called the special orthogonal group of rank n. The determinant of any matrix in
SO(n) is equal to 1, while the determinant of any matrix in the second connected
component is equal to −1.

Let F = C. The set U(V ) of all g ∈ GL(V ) such that (gv, gw) = (v,w) for
all v, w ∈ V , is a subgroup of GL(V ), it is called the unitary group of V . The
special unitary group of V is SU(V ) := U(V ) ∩ SL(V ). Both U(V ) and SU(V )
are compact topological groups.

In a coordinate form, U(n) := μ(U(V )) is the set of n × n matrices A with
AA∗ = I, the unitary group of rank n. Here A∗ is the conjugate transposed
matrix to A. The elements of U(n) are unitary matrices. The special unitary
group of rank n is SU(n) := μ(SU(V )).

Other classical groups are described in Weyl (1997) and Goodman & Wallach
(2009). All classical groups are locally compact and are Lie groups.

Let Mn be the space of n×n complex matrices. For a matrix M ∈Mn, define
the principal minors by

Δi(M) := det

⎛⎜⎝m11 · · · m1i

...
. . .

...
mi1 · · · mii

⎞⎟⎠ , 1 ≤ i ≤ n.

Theorem 2 (Cholesky decomposition). Let M ∈ Mn be a symmetric matrix
with Δi(M) �= 0, 1 ≤ i ≤ n. There exists an upper-triangular matrix B ∈ Mn

such that M = B�B. The matrix B is uniquely determined by M up to left
multiplication by a diagonal matrix with entries ±1.

Hansen (2010) proved that the Cholesky decomposition remains true if the
matrix M is infinite.

2.4 Group Actions

2.4.1 Actions, Stabilisers and Orbits

Let X be a non-empty set, and let G be a group with identity element e. A left
action of the group G on the set X is a mapping ρ : G ×X → X that maps a
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pair (g, x) ∈ G×X to a point g · x ∈ X such that e · x = x (the identity axiom)
and g · (h · x) = (gh) · x (the compatibility axiom) for all g, h ∈ G and for all
x ∈ X.

An action is called transitive if for each pair x, y ∈ X there exists a g ∈ G

such that g · x = y. An action is called faithful if for any g ∈ G, g �= e there is
an x ∈ X such that g · x �= x.

The stabiliser Gx of a point x ∈ X is the set of all g ∈ G such that g · x = x.
The stabiliser of any point x ∈ X is a subgroup of G. The orbit of x in X is the
set G · x := { g · x : g ∈ G }. The set of all orbits is denoted by X/G. This set
forms a partition of X. The group action is transitive if and only if it has only
one orbit. Let π : X → X/G be the orbital mapping that maps a point x ∈ X to
its orbit.

If G is a topological group and X is a topological space, we consider only
continuous left actions, i.e. when the mapping from G × X to X that maps
(g, x) to g · x is continuous. If G is a Lie group and X is a manifold, we consider
only real-analytic left actions, i.e. when the mapping from G×X to X that maps
(g, x) to g · x is real-analytic. Introduce the quotient topology on X/G: a subset
O ⊂ X/G is open if and only if the inverse image π−1(O) is open in X. The
introduced topological space is called the quotient of X under the action of G.

A left action is called proper , if the map (g, x) �→ (g · x, x) from G × X to
X ×X is proper: the inverse image of any compact set is compact. If an action
is continuous and proper, then the quotient is Hausdorff.

Two point x, y ∈ X, and two orbits G · x, G · y ∈ X/G are of the same orbit
type, with notation x ∼ y, and G · x ∼ G · y, if Gx is conjugate to Gy within G,
that is,

Gy = { g−1hg : h ∈ Gx }

for some g ∈ G. A point x dominates y, and an orbit G · x dominates G · y, with
notation y � x, and G · y � G · x, if Gx is conjugate within G to a subgroup of
Gy, that is, g−1Gxg ⊂ Gy for some g ∈ G.

Let H be a subgroup of G. The set of fixed points for H in X is

XH = { y ∈ X : h · y = y for all h ∈ H }.

If H is a compact subgroup of a Lie group G and acts analytically on a manifold
M , then each connected component of MH is a closed set and a manifold.

Example 8 (Affine spaces). Formally, an affine space is a triple (E, V,+), where
V is an additive group of a linear space described in Example 6, and + is a
transitive and faithful action of V on E. The space V is the underlying space
of E, or the space domain. We denote by A + x the result of the action of the
vector x ∈ V on a point A ∈ E. The map A �→ A+x is called the translation by
the vector x. The vector in V that translates the element A ∈ E to the element
B ∈ E is denoted by B −A.
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Let O be a point in E, and let ΘO : E → V be the following map:

ΘO(B) = B −O.

There exists a unique structure of a linear space on E such that ΘO ia an
isomorphism of linear spaces. Denote the set E endowed with the above structure
by EO and call it the vectorisation of E at O.

To introduce coordinates into E, choose d+ 1 points O, A1, . . . , Ad such that
{Ai − O : 1 ≤ i ≤ d } is a basis for V , and call this set an affine frame with an
origin O. The coordinates of A ∈ E in this frame are the reals λ1, . . . , λd such
that

A−O =
d∑
i=1

λi(Ai −O).

Example 9 (Actions of classical groups). Any classical group G(n,F) acts
continuously on Fn by matrix-vector multiplication.

Put xρ := (0, 0, . . . , 0, ρ)� ∈ Rn with ρ ≥ 0. The O(n)-orbit of the point x0

is x0. The stabiliser O(n)x0 is O(n). The orbit of a point xρ with ρ > 0 is the
centred sphere of radius ρ:

O(n) · xρ = {x ∈ Rn : ‖x‖ = ρ }.

The stabiliser of any point xρ with ρ > 0 is the subgroup of matrices of the form(
A 0
0� 1

)
, A ∈ O(n− 1).

The quotient Rn/O(n) is the interval [0,∞).

2.4.2 Application: Symmetric and Alternating Tensors

Let V be a linear space of dimension n over the field F and let r be a positive
integer. The symmetric group Σr acts on τ(V r) by permuting the positions of
the factors in the tensor product as

σ · (v1 ⊗ · · · ⊗ vr) := vσ−1(1) ⊗ · · · ⊗ vσ−1(r), σ ∈ Σr. (2.7)

This action may be extended to V ⊗r by the universal mapping property and
therefore defines a representation σr of the group Σr. Define the linear operator
P+ ∈ L(V ⊗r) by

P+T :=
1
r!

∑
σ∈Σr

σr(σ) · T .

The range of the operator P+ is denoted by Sr(V ) and is called the space of
symmetric tensors of rank r over V . The elements of this space are called rank r
symmetric tensors. For example, the space S2(V ) is spanned by the tensors v ⊗
w +w ⊗ v for v, w ∈ V .
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In a coordinate form, the group Σr acts on the tensor Ti1···ir by

(σr(σ) · T )i1···ir := Tσ−1(i1)···σ−1(ir), σ ∈ Σr. (2.8)

For any v1, . . . , vr ∈ V consider the function

v �→
r∏
j=1

(vj ,v), v ∈ V. (2.9)

The linear span of the above functions is denoted by P r(V ) and is called the space
of homogeneous polynomials (or n-ary forms) of degree r on V . The elements of
this space are homogeneous polynomials or n-ary forms of degree r.

In a coordinate form, let v = xiei ∈ V and vj = vijei. The mapping (2.9)
becomes

(x1, . . . , xn)� �→
r∏
j=1

vijx
i.

Define f : V r → P r(V ) as the r-bilinear map that maps an element
(v1, . . . ,vr) ∈ V r to the mapping (2.9). By the universal mapping property,
there exists a unique map F : Sr(V ) → P r(V ) such that

F (P (v1 ⊗ · · · ⊗ vr)) =
r∏
j=1

(vj ,v)

with the following commutative diagram:

V r
τ ��

f ���
��

��
��

��
Sr(V )

F

��
P r(V )

(2.10)

Moreover, F is an isomorphism between Sr(V ) and P r(V ).
Let Σ be a subgroup of the symmetric group Σr having |Σ| elements. Define

the linear operator P+
Σ ∈ L(V ⊗r) by

P+
Σ T :=

1
|Σ|

∑
σ∈Σ

σr(σ) · T . (2.11)

The tensors lying in the range P+
Σ (V ⊗r) are important for continuum physics.

For example, the tensors in S2(V ) are called stress tensors.

Example 10 (Elasticity tensor). Let r = 4, and let Σ ⊂ Σ4 be the 8-element
subgroup generated by the transpositions (12), (34) and the product (13)(24).
We have P+

Σ (V ⊗4) = S2(S2(V )), and the tensors in this space are called elasticity
tensors.
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Define the linear operator P− ∈ L(V ⊗r) by

P−T :=
1
r!

∑
σ∈Σr

ε(σ)σ · T .

The range of the operator P− is denoted by Λr(V ) and is called the space of
alternating or skew-symmetric tensors of rank r over V . The elements of this
space are called rank r alternating tensors or rank r skew-symmetric tensors.
For example, the space Λ2(V ) is spanned by the tensors v ⊗ w − w ⊗ v for v,
w ∈ V .

Let n be the dimension of V . For 0 ≤ r ≤ n, the dimension of the space Λr(V )
is equal to

(
n
r

)
, and for r > n we have Λr(V ) = {0}.

Assume that the group Σ contains odd permutations. Define the linear
operator P−

Σ ∈ L(V ⊗r) by

P−
Σ T :=

1
|Σ|

∑
σ∈Σ

ε(σ)σ · T . (2.12)

2.5 Group Representations

Let G be a topological group. A representation of G or a G-module is a pair
(V, ρ), where V is a linear space over a field F, and ρ : G×V → V is an action of
G on V such that for each g ∈ G the translation U(g) : v �→ ρ(g,v) is a F-linear
map. When V is finite-dimensional, we suppose in addition that the action ρ is
continuous. As usual, we denote ρ(g,v) by g · v. In this notation, the defining
equations of an action take the form

e · v = v, (gh) · v = g · (h · v).

In terms of translations, they become

U(e) = I, U(g)U(h) = U(gh).

Thus, U(g) is a linear operator in V with inverse U(g−1), and the map g �→
U(g) is a homomorphism between G and the group Aut(V ) of linear invertible
operators in V . Conversely, given any such homomorphism U , we define an action

ρ : G× V → V, (g,v) �→ U(g)v.

Moreover, if the space V is finite-dimensional, then ρ is continuous if and
only if U is continuous. A choice of a basis for V determines an isomorphism
between Aut(V ) and GL(n,F), where n = dimV . A continuous homomorphism
U : G → GL(n,F) is called a matrix representation. In what follows we will
denote representations either (V, ρ) or U(g), or even just V , when ρ is thought.

Let (V, ρ) and (W, τ) be representations of G. An operator A ∈ L(V,W ) is
called an intertwining operator if

A(g · v) = g · (Av), g ∈ G, v ∈ V. (2.13)
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The intertwining operators form a linear space HomG(V,W ) over F. Another
name for an intertwining operator is an equivariant map.

The representations (V, ρ) and (W, τ) are called equivalent if the space
HomG(V,W ) contains an invertible operator.

An inner product V ×V → F, (u,v) �→ 〈u,v〉 is called G-invariant if 〈g ·u, g ·
v〉 = 〈u,v〉 for all g ∈ G and u, v ∈ V . A representation (V, ρ) together with a
G-invariant inner product is called orthogonal if F = R and unitary if F = C.

If the space V is finite-dimensional, then a choice of an orthonormal basis for
V defines a homomorphism G → O(n) if F = R or G → U(n) if F = C. Any
finite-dimensional representation of a compact group G possesses a G-invariant
inner product.

A subspaceW ⊂ V is called invariant or a submodule if g·w ∈W for g ∈ G and
w ∈ W . A non-zero representation V if called irreducible if it has no invariant
subspaces other than {0} and V . A representation which is not irreducible is
called reducible.

Example 11. Put V = F1. U(g) = 1. This representation is called trivial.
Let G be one of the groups GL(n,F), O(n), or U(n). The representation with

V = F1 and U(g) = det g is called determinant representation.
Let G be any classical group of Example 7. The representation with V = Fn

and U(g) = g is called defining representation.

The direct sum V ⊕W of two G-modules V and W becomes a G-module under
the action g · (v,w) = (g ·v, g ·w). This module is called the direct sum of the G-
modules V and W . If both V and W are finite-dimensional with m = dimV and
n = dimW , then the direct sum of representations is formed by block matrices:

g �→
(
A(g) 0

0 B(g)

)
.

Let G be a compact group. Denote by Irr(G,F) the set of equivalence classes
of irreducible G-modules over F. If W is equivalent to a submodule of V we say
that W is contained in V .

If W is irreducible then we define the multiplicity of W in V as

n(W,V ) = dimF HomG(W,V ).

To explain this definition, consider the map

dW : HomG(W,V ) ⊗W → V, A⊗w → Aw.

The operator dW intertwines the representations

g · (A⊗w) = A⊗ (g ·w) (2.14)

and V . Define the map d as the direct sum of dW over W ∈ Irr(G,F). This map
is invertible and establishes an equivalence between the representation V and
the direct sum
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W∈Irr(G,F)

⊕HomG(W,V ) ⊗W

of the representations (2.14). The image of the map dW in V is called the W -
isotypical summand of V . It is generated by the irreducible submodules of V
that are equivalent to W . The multiplicity of W in V is simply the number of
copies of W contained in V .

Let V and W be representations of G. The tensor product acts in V ⊗W by
g · (v⊗w) = (g · v)⊗ (d ·w). The group G acts in the linear space HomG(V,W )
of intertwining operators by (g · A)v = g · (Ag−1 · v), where A ∈ HomG(V,W ),
g ∈ G and v ∈ V . In other words, the diagram

V
A ��

g

��

W

g

��
V

g·A
�� W

is commutative. In the case when V is complex and W = C1 is the complex
trivial representation, the representation HomG(V,C1) = V ∗ is called the dual
representation.

If V is finite-dimensional and v1, . . . , vn is a basis of V , then

g · vj =
n∑
i=1

uij(g)vj .

If v∗1 , . . . , v∗n is a dual basis, then

g · v∗j =
n∑
i=1

u∗ij(g)vj

and

u∗ij(g) = 〈g · v∗j ,vi〉 = 〈v∗j , g−1 · vi〉 =

〈
v∗j ,

n∑
k=1

uki(g−1)vk

〉
= uji(g−1),

that is, g acts via the transpose of the inverse.
The conjugate space V is also a G-module, called the conjugate representation.
When V is unitary, then the matrix entries of both V ∗ and V are complex

conjugate to those of V .
A representation V is called self-conjugate if V and V are equivalent.
The character of a finite-dimensional representation V is defined as

chV (g) := trU(g), g ∈ G.

In particular, the character of a one-dimensional representation is this presenta-
tion itself. The characters of irreducible unitary representations of an abelian
topological group G form a multiplicative group Ĝ, the character group of
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the group G. The base of the topology in Ĝ consists of finite intersections of
the sets

{ ρ ∈ Ĝ : ρ(K) ⊂ O },

where K runs over all compact subsets of G and O runs over open subsets of
U(1). The above topology is therefore called the compact-open topology.

If V1, . . . , Vk are irreducible and pairwise non-equivalent representations, then
their characters are linearly independent. For any representations V and (W ) we
have

chV⊕W (g) = chV (g) + chW (g), chV⊗W (g) = chV (g) chW (g).

Let U(g) be a representation of a group G, and let T (h) be a representation
of a group H. The outer tensor product of the above representations is the
representation (U⊗̂T ) of the Cartesian product G×H defined by

(U⊗̂T )(g, h) = U(g) ⊗ T (h), g ∈ G, h ∈ H.

If the representations U(g) and (T (h)) are irreducible, then the representation
U⊗̂T is irreducible, and all irreducible representations of G×H are of the form
U⊗̂T .

Let G be a compact Hausdorff topological group. Let C(G,F) be the space of
F-valued continuous functions on G with norm

‖f‖ := max
g∈G

|f(g)|.

Consider the following action of the group G on the set C(G,F):

(g · f)(h) := f(g−1h), h ∈ G.

A function f ∈ C(G,F) is called almost invariant if the linear span of the orbit
G · f is finite-dimensional. Denote by R(G,F) the set of all almost invariant
functions.

Let X be a Hausdorff topological space, and let B(X) be the σ-field of Borel
sets in X. A measure μ on B(X) is called tight if, for any Borel set A, μ(A) is
the supremum of μ(K) over all compact subsets K of A. μ is called locally finite
if every point of X has a neighbourhood O with μ(O) < ∞. A Radon measure
is a locally finite tight measure. Every finite measure defined on Borel sets of a
finite-dimensional linear space is Radon.

Let G be a compact Hausdorff topological group. There exists a unique
measure μ on the Borel σ-field of G satisfying the following conditions.

1. μ is Radon.
2. μ is left-invariant : μ(g−1A) = μ(A) for any Borel set A and for any g ∈ G.
3. μ is probabilistic: μ(G) = 1.

The above measure is called the Haar measure on G.
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Let L2(G,F,dμ) be the Hilbert space of F-valued square-integrable functions
with respect to the Haar measure. The inner product in the space L2(G,F,dμ)
is defined as

(f1, f2) :=
∫
G

f1(g)f2(g) dμ(g).

Theorem 3 (Peter–Weyl). The set R(G,F) is dense in both C(G,F) and
L2(G,F,dμ).

To use this theorem in practice, consider the fine structure of the set R(G,F).
Let U(g) be either an irreducible orthogonal representation of G in a real linear
space or an irreducible unitary representation of G in a complex linear space.
Consider the bilinear map from V ×V to C(G,F) that maps a pair (x,y) to the
function (U(g)x,y). By the Universal Mapping Property, there is a linear map
ΦV : V ⊗ V → G(G,F) with ΦV (x ⊗ y)(g) = (U(g)x,y). Denote by RU (G,F)
the image of V ⊗ V under ΦV in R(G,F).

Theorem 4 (The Fine Structure Theorem, Hofmann & Morris, 2013). The set
{RU (G,F) : U ∈ Irr(G,F) } is an orthogonal family of closed vector subspaces of
the Hilbert space L2(G,F,dμ). Its algebraic direct sum is∑

U∈Irr(G,F)

RU (G,F) = R(G,F),

while its orthogonal Hilbert space direct sum is∑
U∈Irr(G,F)

⊕RU (G,F) = L2(G,F,dμ).

The dimension of the space RU (G,F) is

dimRU (G,F) = mdimU,

where m = dimU if F = C.

In a coordinate form, it is possible to choose a basis {e1, . . . ,edimU} of the
space V in such a way that the matrix entries

{ (U(g)ei,ej) : U ∈ Irr(G,F), 1 ≤ i ≤ dimU, 1 ≤ j ≤ m }

form an orthogonal basis in the Hilbert space L2(G,F,dμ), and the set of their
finite linear combinations is equal to R(G,F), therefore, is dense in C(G,F).

The Fine Structure Theorem holds true for the case of the spaces C(G/H,F)
and L2(G/H,F,dμ), where H is a closed subgroup of G. The group G acts on
the set C(G/H,F) as follows:

(g · f)(hH) = f(g−1hH).
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The matrix entries

{uij(g) = (U(g)ei,ej) : U ∈ Irr(G,F), 1 ≤ i ≤ dimU, 1 ≤ j ≤ m′
U }

form an orthogonal basis in the Hilbert space L2(G/H,F,dμ), and the set of their
finite linear combinations is equal to R(G,F), therefore, is dense in C(G,F). The
set {ej) : 1 ≤ j ≤ m′

U } is a basis of the intersection of the linear span of the first
m vectors of the basis and the isotypic subspace of the trivial representation of
the group H.

Assume that a compact group G is easily reducible. This means that for any
three irreducible representation S(g) in the space V , T (g) in the space W , and
U(g) in the space X the multiplicity mU of U(g) in S⊗T is equal to either 0 or 1.
For example, the groups O(2) and O(3) are easily reducible. Assume mU = 1.
Let {eUi : 1 ≤ i ≤ dimU } be an orthonormal basis in the space X, and similarly
for S(g) and T (g). There are two natural bases in the space V ⊗W . The coupled
basis is

{eSi ⊗ eTj : 1 ≤ i ≤ dimS, 1 ≤ j ≤ dimT }.

The uncoupled basis is

{eUk : mU = 1, 1 ≤ k ≤ dimU }.

In a coordinate form, the elements of the space V ⊗W are matrices with dimS

rows and dimT columns. The coupled basis consists of matrices having 1 in the
ith row and jth column, and all other entries equal to 0. Denote by ck[i,j]U [S,T ] the
coefficients of expansion of the vectors of uncoupled basis in the coupled basis:

eUk =
dimS∑
i=1

dimT∑
j=1

c
k[i,j]
U [S,T ]e

S
i ⊗ eTj . (2.15)

The numbers ck[i,j]U [S,T ] are called the Clebsch–Gordan coefficients of the group G.
In the coupled basis, the vectors of the uncoupled basis are matrices ckU [S,T ]

with matrix entries ck[i,j]U [S,T ], the Clebsch–Gordan matrices. The uncoupled basis
is orthonormal, therefore we have

dimS∑
i=1

dimT∑
j=1

∣∣∣ck[i,j]U [S,T ]

∣∣∣2 = 1. (2.16)

Denote by DS(g) the matrix of the representation S(g) in the basis {eSi : 1 ≤
i ≤ dim s }, and similarly for T (g) and U(g). Let C be the square matrix whose
rows are enumerated by the pairs (U, k), mU = 1, 1 ≤ k ≤ dimU and whose
columns are enumerated by the pairs (i, j), 1 ≤ i ≤ dimS, 1 ≤ j ≤ dimT . The
matrix entries of C are as follows:

C(U,k)(i,j) := c
k[i,j]
U [S,T ].
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According to (2.15), the matrix C is the transition matrix from the coupled basis
to the uncoupled one. If the representations S(g) and T (g) are unitary (resp.
orthogonal), then the matrix C is unitary (resp. orthogonal). In particular,

DS(g) ⊗DT (g) = C−1
(
⊕U : mU=1D

U (g)
)
C,

or in a coordinate form:

DS
ij(g)D

T
lm(g) =

∑
U : mU=1

dimS∑
k,n=1

c
k[i,l]
U [S,T ]D

U
kn(g)c

n[j,m]
U [S,T ]. (2.17)

Let λU ∈ F with |λU | = 1 be a phase. Define new Clebsch–Gordan coefficients
by

(ck[i,j]U [S,T ])
′ = λUc

k[i,j]
U [S,T ].

New coefficients still satisfy (2.17) and therefore may serve as Clebsch–Gordan
coefficients. Multiply both sides of (2.17) by DU

kn(g) and integrate over G with
respect to the Haar measure. By the Peter–Weyl theorem, we obtain

dim τ

∫
G

DS
ij(g)D

T
lm(g)DU

kn(g) dμ(g) = c
k[i,�]
U [S,T ]c

n[j,m]
U [S,T ]. (2.18)

Choose numbers i0 with 1 ≤ i0 ≤ dimS, l0 with 1 ≤ l0 ≤ dimT and k0 with
1 ≤ k0 ≤ dimU , and put i = j = i0, l = m = l0 and k = n = k0. We obtain

dimU

∫
G

DS
i0i0(g)D

T
�0�0(g)D

U
k0k0

(g) dμ(g) =
∣∣∣ck0[i0,�0]U [S,T ]

∣∣∣2 .
By (2.16), we may choose i0, �0 and k0 in such a way that the right-hand side is
not equal to 0. Choose the phase λU in such a way that

c
k0[i0,�0]
U [S,T ] =

(
dimU

∫
G

DS
i0i0(g)D

T
�0�0(g)D

U
k0k0

(g) dμ(g)
)1/2

(2.19)

and calculate the remaining Clebsch–Gordan coefficients using (2.18):

c
n[j,m]
U [S,T ] =

dimU

c
k0[i0,�0]
U [S,T ]

∫
G

DS
i0j(g)D

T
l0m(g)DU

k0n
(g) dμ(g). (2.20)

Consider a representation U(g) of a compact Lie group G in a real finite-
dimensional linear space V as a group action. Then, there are only finitely many
distinct orbit types. Moreover, the orbit types in V form a stratification of V ,
and the orbit types in the quotient V/G form a stratification of V/G.

Define the directed graph T of the orbit type stratification as follows. The
vertices of T are orbit types in V/G. One draws an arrow from A ∈ T to B ∈ T ,
A → B, if B is a subset of the closure of A, that is, elements of A converge to
elements of B.

The directed graph has the following properties. If A → B and A �= B, then
dimA > dimB and dimπ−1(A) > dimπ−1(B), where π is the orbital mapping
from V to V/G. The relation A → B defines a partial ordering in T , that is: if
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A→ B and B → C, then A→ C and A = B if and only if A→ B and B → A.
If we define the dimension of V/G as the maximal dimension of its strata, then
any chain has at most 1 + dimV/G many elements. A component A ∈ T is
minimal with respect to the introduced partial ordering if and only if A is closed
in V/G and π−1(A) is closed in V . We call it the minimal orbit type. Similarly,
a component A ∈ T is maximal if and only if A is open in V/G and π−1(A) is
open in V . In the last case, A is also connected and dense in V/G, π−1(A) is
connected and dense in V , and the maximal element is unique. We call it the
principal orbit type.

An orbit type A determines the conjugacy class [H] of subgroups of G. More-
over, A→ B if and only if any group in the conjugacy class determined by A is
a subgroup of some group in the conjugacy class determined by B. This relation
defines a partial ordering on the set of conjugacy classes of stabilisers of the
representation U(g). Following Golubitsky, Stewart & Schaeffer (1988), we call
the corresponding directed graph the lattice of isotropy subgroups.

In figures, we only draw the arrows between immediate successors. We will
draw two orbit types (and the corresponding conjugacy classes of stabilisers) at
thew same horizontal level if and only if they have the same dimension.

Let H be the stabiliser group of a vector x ∈ V , and let A be the orbit
type of x. The fixed point set V H is a subspace of V . For any group K of the
normaliser N(H) containing H, the space V H is an invariant subspace of the
representation (ρ, V ) of the group K. The dimension of V H is calculated by the
trace formula:

dimV H =
∫
H

chU (h) dh, (2.21)

where dh is the probabilistic Haar measure on H. The dimension of the stratum
A is

dimA = dimV H + dimH − dimN(H),

while the dimension of the stratum π−1(A) is

dimπ−1(A) = dimV H + dimG− dimN(H).

From now on, we denote by U with different indices a unitary representation
of a group G, and by ρ with different indices an orthogonal representation of G.

Example 12 (Irreducible unitary representations of SO(2)). The group SO(2)
is isomorphic to the group U(1) of complex numbers of the form eiϕ, 0 ≤ ϕ < 2π.
The character group of the abelian group U(1) is the additive group Z of integers.
The character U � is

U �(ϕ) = ei�ϕ, � ∈ Z.

The Haar measure on U(1) is

dμ(ϕ) =
1
2π

dϕ.
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The Fine Structure Theorem tells us that the Fourier coefficients of a function
f ∈ L2(U(1),dμ) is

A�(f) =
1
2π

∫ 2π

0

e−i�ϕf(ϕ) dϕ,

while its Fourier series is

f(ϕ) =
∑
�∈Z

A�(f)ei�ϕ.

The Fourier series of a square integrable function converges in the space
L2(U(1),dμ), while that of a continuous function converges uniformly.

Example 13 (Irreducible unitary representations of O(2)). The group O(2) has
two connected components. The connected component of the identity matrix is
SO(2), the set of matrices

gϕ =
(

cosϕ sinϕ
− sinϕ cosϕ

)
, 0 ≤ ϕ < 2π.

The elements of SO(2) are called rotations.
The second component is

O(2) \ SO(2) = {σxgϕ : gϕ ∈ SO(2) },

where

σx =
(

1 0
0 −1

)
is the reflection through the x axis. The elements of this component are called
reflections.

The irreducible unitary representations of O(2) are as follows: trivial represen-
tation U+(g) = 1, determinant representation U−(g) = det g acting in C1 and
the representations U �, � ≥ 1, acting in C2 as follows:

U �(gϕ) =
(

e−i�ϕ 0
0 ei�ϕ

)
, U �(σx) =

(
0 1
1 0

)
.

Later on, we will describe the irreducible orthogonal representations of the
groups O(2) and O(3) using the following algorithm, which is applicable for any
compact group G. The set Irr(G,C) of equivalence classes of irreducible unitary
representations of G is the disjoint union of three subsets.

1. Irr(G,C)R, the representations of real type. There exists a G-invariant real
structure on V .

2. Irr(G,C)C, the representations of complex type. The representation is not self-
conjugate.

3. Irr(G,C)H, the representations of quaternionic type. There exists aG-invariant
quaternionic structure on V .
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An irreducible unitary representation V of real type generates an irreducible
orthogonal representation under restriction to the (+1) eigenspace V+ of the G-
invariant real structure. The multiplication by i ∈ C is an invertible intertwining
operator between V+ and V−, the (−1) eigenspace of the above structure.

Any irreducible unitary representation V of complex type becomes irreducible
and orthogonal when V is viewed as a real linear space with the same action of
G. Two irreducible orthogonal representations obtained in this way from irre-
ducible unitary representations V1 and V2 are equivalent if and only if either V1

is equivalent to V2 or V1 is equivalent to V2.
Finally, an irreducible unitary representation V of quaternionic type becomes

irreducible and orthogonal when V is viewed as a real linear space with the same
action of G. No other irreducible orthogonal representations of G exist.

Example 14 (Irreducible orthogonal representations of SO(2) and O(2)). All
irreducible unitary representations of the group O(2) are of real type. It follows
that the restriction of each of them to the (+1) eigenspace V+ of the G-invariant
real structure defines a one-to-one correspondence between Irr(O(2),C) and
Irr(O(2),R). Following Auffray, Kolev & Olive (2017), consider three different
representatives, or models, of each equivalence class in Irr(O(2),R).

The first model is as follows. The first two representations are ρ+(g) = 1 and
ρ−(g) = det g. The representation ρ�(g), � ≥ 1, are defined in the space V� = R2

as follows:

ρ�(gϕ) =
(

cos(�ϕ) sin(�ϕ)
− sin(�ϕ) cos(�ϕ)

)
, ρ�(σx) = σx.

The subgroup O(1) = {I, σx} has two irreducible orthogonal representations:
ρ+(g) = 1 and ρ−(g) = det g. The subspace of V � spanned by the first (resp.
second) basis vector, carries the representation ρ+ (resp. ρ−), therefore we denote
the first (resp. second) basis vector by e1 (resp. e−1).

The second model is as follows. Let P �(R2) be the real linear space of real-
valued homogeneous polynomials of degree � in two variables x and y. The group
action

(g · P )(x) := P (ρ�(g)−1(x)), P ∈ P �(R2), x = (x, y)� ∈ R2 (2.22)

is a representation of the group O(2) in the space P �(R2). This representation is
reducible. The subspace H�(R2) of harmonic polynomials with vanishing Lapla-
cian is an invariant subspace of the representation (2.22). It is well known that
any real-valued harmonic function on R2 is either the real or the imaginary part
of a holomorphic function. It follows that the two-dimensional subspace H�(R2)
is generated by its elements Re(x+ iy)� and Im(x+ iy)�. Consider the mapping
that maps e1 = (1, 0)� ∈ R2 to Re(x + iy)� ∈ H�(R2) and e2 = (0, 1)� ∈ R2

to Im(x + iy)� ∈ H�(R2). By linearity, it extends to an orthogonal intertwining
operator between the representations of the two models.
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The third model is as follows. Let r be a non-negative integer. The group
action

(ρ⊗r(g))(v1, . . . ,vr) := gv1 ⊗ · · · ⊗ gvr

of the group O(2) on (R2)r can be extended by linearity to the orthogonal
representation (U1)⊗r. The representation (R1, ρ⊗0) is trivial. For r ≥ 1, the
action (2.7) can also be extended by linearity to the orthogonal representa-
tion ((Rn)⊗r, ρr) of the symmetric group Σr. It is clear that ρr(σ) commutes
with ρ⊗r(g) for all σ ∈ Σr and for all g ∈ O(n). We can therefore define a
representation ((Rn)⊗r, τ) of the group O(n) ×Σr by

τ(g, σ)(T ) := ρ⊗r(g)ρr(σ)(T ), T ∈ (Rn)⊗r.

Let G be a closed subgroup of O(n), and let Σ be a subgroup of Σr. The restric-
tion of the representation (Rn)⊗r, τ) to Σ×G is the direct sum of the irreducible
representations of the group Σ × G. Every such representation has the form
τ ′(σ)⊗̂τ ′′(g), where τ ′ ∈ Σ̂, τ ′′ ∈ Ĝ.

Let (τ, ρ+) be the direct sum of all representations τ+(σ)⊗̂τ ′′(g), where
(τ+,R1) is the trivial representation of Σ. We have ρ+ = P+

Σ ((Rn)⊗r), where
P+
Σ is the linear operator (2.11).
In particular, if Σ = Σr, then ρ+ = Sr(Rn), the set of all rank r symmetric

tensors over Rn, or the rth symmetric tensor power of Rn. The represen-
tation (τ,Sr(Rn)) is called the rth symmetric tensor power of the defining
representation and is denoted by (Sr(g),Sr(Rn)).

Assume that the group Σ contains odd permutations. Let (τ, U−) be the direct
sum of all representations ε(σ)⊗̂τ ′′(g). We have ρ− = P−

Σ ((Rn)⊗r), where P−
Σ is

the linear operator (2.12).
In particular, if Σ = Σr, then ρ− = Λr(Rn), the set of all rank r skew-

symmetric tensors over Rn, or the rth skew-symmetric tensor power of Rn. The
representation (τ,Λr(Rn)) is called the rth skew-symmetric tensor power of the
defining representation and is denoted by (Λr(g),Λr(Rn)). When G = O(n),
n ≥ 2, we have the following decomposition:

g ⊗ g = S2(g) ⊕ Λ2(g).

Define the contraction operator acting from (Rn)⊗r to (Rn)⊗(r−2) as follows.
If r ≤ 1, let the contraction operator be the zero operator. Otherwise, for any
pair 1 ≤ i < j ≤ r the ij-contraction operator is defined on the tensors of the
form x1 ⊗ · · · ⊗ xr by

Cij(x1 ⊗ · · · ⊗ xr) = (xi,xj)x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · ·
⊗ xj−1 ⊗ xj+1 ⊗ · · · ⊗ xr.

A tensor T ∈ (Rn)⊗r is called harmonic if any contraction operator maps it to
the zero tensor. In particular, any scalar and any vector are harmonic tensors.
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The restriction of the �th tensor power of the representation (R2, g) to the
space H�(R2) of rank � harmonic tensors is equivalent to (H�(R2), ρ�). An
intertwining operator Φ : H�(R2) → H�(R2) acts as follows:

(ΦT )(x) = T (x, . . . ,x). (2.23)

The polynomial ΦT is indeed harmonic, because

(ΔΦT )(x) = �(�− 1)(trT )(x, . . . ,x) = 0.

The inverse operator Φ−1 : H�(R2) → H�(R2) acts by polarisation:

(Φ−1P )(x1, . . . ,x�) =
1
�!

∂�

∂t1 · · · ∂t�

∣∣∣∣
t1=···=t�=0

P (t1x1 + · · · + t�x�). (2.24)

Following Auffray et al. (2017), put H0(R2) = H−1(R2) = R1, and let the
representation ρ+ (resp. ρ−) acts in H0(R2) (resp. H−1(R2)). The spaces H�(R2),
� ≥ −1, have special names. In particular, H−1(R2) is the space of pseudo-scalars,
or hemitropic coefficients. H0(R2) is the space of scalars, or isotropic coefficients.
H1(R2) is the space of vectors. H2(R2) is the space of deviators. H�(R2), � ≥ 3,
is the space of �th-order deviators.

The characters of the two-dimensional representations ρ�, � ≥ 1, are as follows

chρ�(gϕ) = 2 cos(�ϕ), chρ�
(kgϕ) = 0.

Expanding the product of two characters into a sum of characters, we obtain a
tensor multiplication table for the irreducible orthogonal representations of O(2)
as follows:

ρ+ ρ− ρ�

ρ+ ρ+

ρ− ρ− ρ+

ρm ρm ρm ρ|�−m| ⊕ ρ�+m,m �= �

ρ+ ⊕ ρ− ⊕ ρ2�,m = �

The Clebsch–Gordan coefficients for the irreducible orthogonal representations
of O(2) are easy to calculate using (2.19) and (2.20). For n �= m, the Clebsch–
Gordan matrices are as follows

c−1
|m−n|[m,n] = c0−[m,m] =

(
0 1/

√
2

−1/
√

2 0

)
,

c1|m−n|[m,n] = c0+[m,m] =
(

1/
√

2 0
0 1/

√
2

)
,

c−1
m+n[m,n] =

(
0 1/

√
2

1/
√

2 0

)
, c1m+n[m,n] =

(
−1/

√
2 0

0 1/
√

2

)
. (2.25)

The restrictions of the representations ρ+ and ρ− to the subgroup SO(2) are
equal to ρ0, its trivial representation. The representations ρ� remain irreducible
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after restriction. No other irreducible orthogonal representations of SO(2)
exist.

The characters of the representations ρ�, � ≥ 1, are

chρ�(ϕ) = 2 cos(�ϕ).

Expanding the product of two characters into a sum of characters, we obtain
a tensor multiplication table for the irreducible orthogonal representations of
SO(2) as follows:

ρ0 ρ�, � ≥ 1
ρ0 ρ0 ρ�

ρm,m ≥ 1 ρm ρ|�−m| ⊕ ρ�+m,m �= �

2ρ0 ⊕ ρ2�,m = �

As we see, the group SO(2) is not easily reducible. A general method of calcu-
lating Clebsch–Gordan coefficients for such groups is described in Klimyk (1979).
Instead of using the above method, we use the fact that the representations of
SO(2) act in the same space as those of O(2) and share the same basis. Formulae
for Clebsch–Gordan coefficients follow:

c−1
|m−n|[m,n] = c00,2[m,m] =

(
0 1/

√
2

−1/
√

2 0

)
,

c1|m−n|[m,n] = c00,1[m,m] =
(

1/
√

2 0
0 1/

√
2

)
,

c−1
m+n[m,n] =

(
0 1/

√
2

1/
√

2 0

)
, c1m+n[m,n] =

(
−1/

√
2 0

0 1/
√

2

)
, (2.26)

where the first copy of the trivial representation acts in the linear space gen-
erated by the identity operator, while its second copy acts in the space of
skew-symmetric matrices.

The directed graph of the orbit type stratification of the representation (ρ�,R2)
is as follows:

{0}

(0,∞)

��
. (2.27)

The lattice of isotropy subgroups for O(2) is

[O(2)]

[Z2]

��
,
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while that for SO(2) is

[SO(2)]

[E]

��
.

In what follows we will draw only the lattice of isotropy subgroups.

Example 15 (Irreducible unitary representations of SU(2)). The group SU(2)
consists of the matrices

g =
(
α β

−β α

)
, α, β ∈ C, |α|2 + |β|2 = 1. (2.28)

The action

g · P (u, v) = P (g−1(u, v)�)

is an irreducible representation U �(g) of SU(2) in the complex linear space
P 2�(C2) of complex-valued homogeneous polynomials of degree 2� in two com-
plex variables, where � = 0, 1/2, 1, . . . . Another common name for this space is
the space of 2-ary (or binary) forms of degree 2� on C2. Note that U �(−I) = I

if and only if � is integer.
Introduce an inner product in the space P 2�(C2) in such a way that the binary

forms

em(u, v) := (−1)�+m
√

(2�+ 1)!
(�+m)!(�−m)!

u�+mv�−m, (2.29)

where m = −2�, −2� + 1, . . . , 2�, constitute an orthonormal basis. The basis
(2.29) is called the Wigner orthonormal basis.

The matrix entries of the operators U �(g) in the above basis are called Wigner
D functions and are denoted by D�

mn(g). The tensor product U �1 ⊗ U �2 is
expanding as follows:

U �1(g) ⊗ U �2(g) =
�1+�2∑

�=|�1−�2|
⊕U �(g). (2.30)

The standard choice of the phase for the Clebsch–Gordan coefficients is

c
|�1−�2|[�1,−�2]
�[�1,�2]

> 0.

Realise the linear space R3 with coordinates x−1, x0 and x1 as the set of
traceless Hermitian matrices over C2 with entries(

x0 x1 + ix−1

x1 − ix−1 −x0

)
.
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The matrix (2.28) acts on the so realised R3 as follows:

π(g)
(

x0 x1 + ix−1

x1 − ix−1 −x0

)
:= g∗

(
x0 x1 + ix−1

x1 − ix−1 −x0

)
g.

The mapping π is a homomorphism of SU(2) onto SO(3). The kernel of π is ±I.
The Cartan map is the linear map ψ : H�(C3) → P 2�(C2) for integer �, where

H�(C3) is the space of complex-valued harmonic polynomials of degree � in three
complex variables x, y and z. It is given by

(ψ(P ))(u, v) = P

(
u2 − v2

2
,
u2 + v2

2i
, uv

)
.

The inverse map ψ−1 is constructed in the following way. Let P ∈ P 2�(C2) with

P (u, v) =
2�∑
m=0

amu
kv2�−k.

For each m, replace the expression umv2�−m with zm(−x+ yi)�−m if 0 ≤ m ≤ �,
and with z2�−m(x+ yi)�−m if �+ 1 ≤ m ≤ 2�. Denote the resulting polynomial
by p(x, y, z). Let r be the integer part of �/2. Put

pr(x, y, z) =

{
1

(2r+1)!Δ
rp(x, y, z), if � is even,

6(r+1)
(2r+3)!Δ

rp(x, y, z), otherwise.

For 0 ≤ k ≤ r define pk(x, y, z) recursively by

pk(x, y, z) = μkΔ
k

⎛⎝p(x, y, z) − r∑
j=k+1

(x2 + y2 + z2)jpj(x, y, z)

⎞⎠ ,

where

μk =
(2�− 4k + 1)!(�− k)!

(2�− 2k + 1)!k!(�− 2k)!
.

Put

(ψ−1P )(x, y, z) = p0(x, y, z),

This map intertwines the representation U �(g) with the representation given by
the action

(g · P )(x, y, z) = P ((π(g))−1(x, y, z)�),

see Olive, Kolev, Desmorat & Desmorat (2017, Theorem 5.1) for a proof.

Example 16 (Irreducible unitary representations of SO(3) and O(3)). Assume
that U is an irreducible unitary representation of SO(3). Then U ◦ π is an irre-
ducible unitary representation of SU(2) with kernel ±E. Then we have U◦π = U �

for some integer �. In other words, every irreducible unitary representation U �

of SU(2) with integer � gives rise to an irreducible unitary representation of



82 Mathematical Preliminaries

SO(3), and no other irreducible unitary representations exist. We denote the
above representation of SO(3) again by U �.

Let SO(2) be the subgroup of SO(3) that leaves the vector (0, 0, 1)� fixed. The
restriction of U � to SO(2) is equivalent to the direct sum of irreducible unitary
representations (C1, eimϕ), −� ≤ m ≤ � of SO(2). Moreover, the space of the
representation (C1, eimϕ) is spanned by the vector em(u, v) of the Wigner basis
(2.29).This is where their enumeration comes from.

The group O(3) is the Cartesian product of its normal subgroups SO(3) and
{I,−I}. The elements of SO(3) are rotations, while the elements of the second
component are reflections. Therefore, any irreducible unitary representation of
O(3) is the outer tensor product of some U � by an irreducible unitary represen-
tation of {E,−E}. The latter group has two irreducible unitary representation:
trivial U+ and determinant U−. Denote U �g := U �⊗̂U+ and U �u := U �⊗̂U−

(g by German gerade, even and u by ungerade, odd). These are all irreducible
unitary representations of O(3).

Introduce a chart on SO(3), the Euler angles. Any rotation g may be performed
by three successive rotations:

● rotation g0(ψ) about the x0-axis through an angle ψ, 0 ≤ ψ < 2π;
● rotation g−1(θ) about the x−1-axis through an angle θ, 0 ≤ θ ≤ π,
● rotation g0(ϕ) about the x0-axis through an angle ϕ, 0 ≤ ϕ < 2π.

The angles ψ, θ and ϕ are the Euler angles. The Wigner D functions are
D�
mn(ϕ, θ, ψ). The Wigner D functions D�

m0 do not depend on ψ and may be
written as D�

m0(ϕ, θ). The spherical harmonics Y m� are defined by

Y m� (θ, ϕ) :=

√
2�+ 1

4π
D�
m0(ϕ, θ). (2.31)

Let (r, θ, ϕ) be the spherical coordinates in R3:

x−1 = r sin θ sinϕ,

x0 = r cos θ,

x1 = r sin θ cosϕ.

(2.32)

The measure dS := sin θ dϕdθ is the Lebesgue measure on the unit sphere S2 :=
{x ∈ R3 : ‖x‖ = 1 }. The spherical harmonics are orthonormal:∫

S2
Y m1
�1

(θ, ϕ)Y m2
�2

(θ, ϕ) dS = δ�1�2δm1m2 .

Example 17 (Irreducible orthogonal representations of SO(3) and O(3)). The
first model of the above representations is as follows. Let H�(R3) be the space
of real-valued homogeneous harmonic polynomials of degree � in three real vari-
ables. There exist two irreducible orthogonal representations of the group O(3)
on H�(R3):
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ρ�(g)P (x) = P (g−1x),

ρ�∗(g)P (x) = det gP (g−1x).

We observe that ρ�(−I)P (x) = P (−x). When � is even, we have P (−x) = P (x),
that is, ρ�(−I) is the identity operator in H�(R3). On the other hand, when � is
odd, we have P (−x) = −P (x), that is, ρ�(−I) multiplies all elements of the space
H�(R3) by −1. In other words, the representation ρ� is the orthogonal version of
the unitary gerade representation U �g for even � and the orthogonal version of
the unitary ungerade representation U �u for odd �. Similarly, the representation
ρ�∗ is the orthogonal version of the unitary ungerade representation U �u for even
� and the orthogonal version of the unitary gerade representation U �g for odd �.

The restriction of both representations to the subgroup SO(3) is the same
representation ρ�, the orthogonal version of the unitary representation U �. It
follows from (2.30) that

ρ�1 ⊗ ρ�2 = ρ�1∗ ⊗ ρ�2∗ =
�1+�2∑

�=|�1−�2|
⊕ρ�,

ρ�1∗ ⊗ ρ�2 = ρ�1 ⊗ ρ�2∗ =
�1+�2∑

�=|�1−�2|
⊕ρ�∗.

(2.33)

The operators of the second model act in the space H�(R3) of rank � harmonic
tensors by

ρ�T (x, . . . ,x) = T (g−1x, . . . , g−1x),

ρ�∗T (x, . . . ,x) = det gT (g−1x, . . . , g−1x).

The direct and inverse intertwining operators between the two models are given
by Equations (2.23) and (2.24).

The third model is as follows. For any polynomial P ∈ P 2�(C2) with integer
� denote by P the polynomial whose coefficients are conjugate to those of P .
Define the mapping J : P 2�(C2) → P 2�(C2) as

(JP )(u, v) := P (−v, u).

It is easy to prove that J is a real structure on P 2�(C2) that respects both
ρ� and ρ�∗. The orthonormal basis in the space P 2�

R
(C2) of eigenvectors of J

with eigenvalue (−1)� was proposed by Gordienko (2002). The vectors of the
Gordienko basis are as follows (m ≥ 1):

P−m(u, v) :=
(−i)�−1

√
2

[(−1)mem(u, v) − e−m(u, v)],

P0(u, v) := (−i)�e0(u, v),

Pm(u, v) := − (−i)�√
2

[(−1)mem(u, v) + e−m(u, v)].

In this basis, the representations ρ� and ρ�∗ become orthogonal.
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Remark 1. The vector P0(u, v) of the Gordienko basis is proportional to the
vector e0(u, v) of the Wigner basis. It follows that the one-dimensional real
subspace generated by P0(u, v) carries the one-dimensional representation of the
subgroup O(2).

Denote the matrix entries of the matrix ρ�(g) by ρ�mn(ϕ, θ, ψ). If g = g(ϕ, θ, ψ),
then

ρ�(g) = ρ�(g0(ϕ))ρ�(g−1(θ))ρ�(g0(ψ))

by definition of a representation. Denote the matrix entries of the matrix
ρ�(g0(ϕ)) by Ω�0,m,n(ϕ), where −� ≤ m,n ≤ �. The non-zero entries are

Ω�0,0,0(ϕ) = 1, Ω�0,m,m(ϕ) = cos(mϕ), Ω�0,−m,m(ϕ) = sin(mϕ), (2.34)

where m = ±1, ±2, . . . , ±�. Denote the matrix entries of the matrix ρ�(g−1(θ))
by Ω�−1,m,n(θ). Then we have

ρ�mn(ϕ, θ, ψ) =
�∑

p,q=−�
Ω�0,m,p(ϕ)Ω�−1,p,q(θ)Ω

�
0,q,n(ψ).

We are only interested in the matrix entries ρ�m0. In this case n = 0. It follows
from (2.34) that q = 0 and p = ±m. The non-zero entries Ω�−1,±m,0(θ) are

Ω�−1,0,0(θ) =
(−1)�

2��!
d�

dμ�
(1 − μ2)�,

Ω�−1,m,0(θ) = − (−1)�

2��!

√
2(�+m)!
(�−m)!

1
(1 − μ2)m/2

d�−m

dμ�−m
(1 − μ2)�,

(2.35)

where m ≥ 1 and μ = cos θ. We obtain:

ρ�m0(ϕ, θ) =

{
Ω�−1,|m|,0(θ) sin(|m|ϕ), m < 0,

Ω�−1,m,0(θ) cos(mϕ), m ≥ 0.

On the second connected component of O(3), the matrix entries of the repre-
sentations ρ� remain the same, and those of the representations ρ∗� are multiplied
by −1.

The Clebsh–Gordan coefficients of the groups SO(3) and O(3) with respect
to the Gordienko basis were calculated by Godunov & Gordienko (2004). We
call them Godunov–Gordienko coefficients and denote them by g

m[m1,m2]
�[�1,�2]

. We
describe the algorithm for calculation of the Godunov–Gordienko coefficients,
following Selivanova (2014).

First, fix non-negative integers �, �1 and �2 with |�1 − �2| ≤ � ≤ �1 + �2.
Calculate the Clebsch–Gordan matrices C±�

�[�1,�2]
. If � �= 1, calculate also C±1

1[�1,�1]

and C±1
1[�2,�2]

. Formulae for calculation the classical Clebsch–Gordan coefficients
may be found in, e.g. Varshalovich, Moskalev & Khersonskĭı (1988).
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Second, let V� be the square matrix with 2�+1 rows and the following non-zero
entries:

V� =
i�−1

√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 (−1)�

· · · · · ·
−1 (−1)m

i
√

2
−i −i(−1)m

· · · · · ·
−i −i(−1)�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Calculate the Godunov–Gordienko matrices G��[�1,�2], G
−�
�[�1,�2]

with � > 0, and
G0

0[�1,�1]
by the following formulae:

G��[�1,�2] =
−(−i�)√

2
V�1 [(−1)�C��[�1,�2] + C−�

�[�1,�2]
](V�2)

�,

G−�
�[�1,�2]

=
−i�−1

√
2
V�1 [(−1)�C��[�1,�2] − C−�

�[�1,�2]
](V�2)

�,

G0
0[�1,�1]

= V�1C
0
0[�1,�1]

(V�1)
�.

If � �= 1, calculate also G±1
1[�1,�1]

and G±1
1[�2,�2]

by Godunov & Gordienko (2004,
equations (1.27)–(1.29)), that is, let

rn� =
1
2

√
3(�+ n+ 1)(�− n)
�(�+ 1)(2�+ 1)

.

The matrix G−1
1[�,�] is skew-symmetric. The only diagonal that lies over the main

one and may contain non-zero elements is as follows.

(g−1[−�+1,−�]
1[�,�] , . . . , g

−1[�,�−1]
1[�,�] ) = (r�−1

� , . . . , r1� , 0,
√

2r0� ,−r1� , . . . ,−r�−1
� ).

The non-zero diagonals of the matrix G1
1[�,�] are as follows.

(g1[�−1,−�]
1[�,�] , . . . , g

1[−�,�−1]
1[�,�] ) = (−r�−1

� , . . . ,−r1� ,
√

2r0� ,−
√

2r0� , r
1
� , . . . , r

�−1
� ),

(g1[�,−�+1]
1[�,�] , . . . , g

1[−�,�−1]
1[�,�] ) = (−r�−1

� , . . . ,−r1� , 0, 0, r1� , . . . , r�−1
� ).

Third, starting from m = �, subtracting −1 and up to m = 2, calculate the
Godunov–Gordienko matrices G−(m−1)

�[�1,�2]
and Gm−1

�[�1,�2]
by

G
−(m−1)
�[�1,�2]

= − 1√
(�+m)(�−m+ 1)

{− 1√
3
[
√
�1(�1 + 1)(2�1 + 1)

×G−1
1[�1,�1]

G−m
�[�1,�2]

+
√
�2(�2+1)(2�2 + 1)G−m

�[�1,�2]
(G−1

1[�2,�2]
)�]

− 1√
(�+m)(�−m+ 1)

{− 1√
3
[
√
�1(�1 + 1)(2�1 + 1)

×G1
1[�1,�1]

Gm�[�1,�2]+
√
�2(�2 + 1)(2�2+1)Gm�[�1,�2](G

1
1[�2,�2]

)�]}
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and

Gm−1
�[�1,�2]

= − 1√
(�+m)(�−m+ 1)

{ 1√
3
[
√
�1(�1 + 1)(2�1 + 1)

×G1
1[�1,�1]

G−m
�[�1,�2]

+
√
�2(�2 + 1)(2�2 + 1)G−m

�[�1,�2]
(G1

1[�2,�2]
)�]

− 1√
(�+m)(�−m+ 1)

{− 1√
3
[
√
�1(�1 + 1)(2�1 + 1)

×G−1
1[�1,�1]

Gm�[�1,�2] +
√
�2(�2 + 1)(2�2 + 1)Gm�[�1,�2](G

−1
1[�2,�2]

)�]}.

Finally, calculate the Godunov–Gordienko matrix G0
�[�1,�2]

by

G0
�[�1,�2]

=
1√

2�(�+ 1)
{ 1√

3
[
√
�1(�1 + 1)(2�1 + 1)

×G1
1[�1,�1]

G−1
�[�1,�2]

+
√
�2(�2 + 1)(2�2 + 1)G−1

�[�1,�2]
(G1

1[�2,�2]
)�]

− 1√
�(�+ 1)

{− 1√
3
[
√
�1(�1 + 1)(2�1 + 1)

×G−1
1[�1,�1]

G1
�[�1,�2]

+
√
�2(�2 + 1)(2�2 + 1)G1

�[�1,�2]
(G−1

1[�2,�2]
)�]}.

If the numbers �1, �2 and �3 are non-negative integers, but do not satisfy the
triangle condition

|�1 − �2| ≤ �3 ≤ �1 + �2,

then put gm3[m1,m2]
�3[�1,�2]

:= 0. The following integral will be important in the sequel.

Theorem 5 (Gaunt integral).

∫
S2
Sm1
�1

(θ, ϕ)Sm2
�2

(θ, ϕ)Sm3
�3

(θ, ϕ) dΩ =

√
(2�1 + 1)(2�2 + 1)

4π(2�3 + 1)

× g
m3[m1,m2]
�3[�1,�2]

g
0[0,0]
�3[�1,�2]

.

(2.36)

This theorem can be proved in exactly the same way as its complex
counterpart; see, for example, Marinucci & Peccati (2011).

The elements of the linear space where the representation ρ1 acts, are called
axial vectors or pseudo-vectors. They do not change under rotations and change
sign under reflections.

The directed graph of the representations ρ∗1 and ρ1 is (2.27). The represen-
tation ρ2 of SO(3) may be realised in the five-dimensional space V of 3 × 3
symmetric traceless matrices by

ρ2(g)A = gAg−1, g ∈ SO(3), A ∈ E.
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The lattice of isotropy subgroups is

[SO(3)]

[O(2)]

��

[D2]

��

where D2 is the group generated by the matrices

σ1 =

⎛⎝−1 0 0
0 −1 0
0 0 1

⎞⎠ , σ2 =

⎛⎝1 0 0
0 −1 0
0 0 −1

⎞⎠ ;

see Golubitsky et al. (1988).
The intertwining operator between the spaces of the second and third models

is the restriction of the Cartan map to the space H2�(R3).

Example 18 (Expansions of representations of orthogonal groups). Put n = 2,
r = 2, G = O(2) and Σ = Σ2. Then the representation (τ, (R2)⊗2) of the group
O(2) ×Σ2 is the direct sum of three irreducible components

τ = [ρ+(g)τ+(σ)] ⊕ [ρ−(g)ε(σ)] ⊕ [ρ2(g)τ+(σ)].

The space of the first component is the span of the identity matrix. The mapping
αI → α is the isomorphism between the above space and the field R of scalars.
The space of the second component consists of 2×2 skew-symmetric matrices. Its
elements are pseudo-scalars (they do not change under rotations and change sign
under reflections, i.e. transform according to the non-trivial representation ρ−(g)
of O(2)). Finally, the space of the third component consists of 2 × 2 traceless
symmetric matrices, or deviators. The second component is (Λ2(g),Λ2(R2)), and
the direct sum of the first and third components is (S2(g),S2(R2)).

Put n = 3, r = 2, G = O(3) and Σ = Σ2. Then the representation (τ, (R3)⊗2)
of the group O(3) ×Σ3 is the direct sum of three irreducible components

τ = [ρ0(g)τ+(σ)] ⊕ [ρ1(g)ε(σ)] ⊕ [ρ2(g)τ+(σ)].

The one-dimensional space of the first component is the span of the identity
matrix and consists of scalars. The three-dimensional space of the second com-
ponent is the space Λ2(R3) of 3 × 3 skew-symmetric matrices. Its elements are
three-dimensional bivectors or pseudo-vectors. Finally, the five-dimensional space
of the third component consists of 3×3 traceless symmetric matrices (deviators).
Again, the second component is (Λ2(g),Λ2(R3)), and the direct sum of the first
and third components is (S2(g),S2(R3)).
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In general, consider the orthogonal representation (τ, (R3)⊗r) of the group
O(3) ×Σr acting by

τ(g, σ)(T ) := (ρ1)⊗r(g)ρr(σ)(T ), T ∈ (R3)⊗r.

This representation is reducible and may be represented as the direct sum of
irreducible representations as follows:

τ(g, σ) =
r∑
�=0

N�
r∑

q=1

⊕ρ̃�(g)ρq(σ),

where q is called the seniority index of the component ρ̃�(g)ρq(σ), see Andrews
& Ghoul (1982), and where ρ̃� = ρ� when � is even and ρ̃� = ρ∗� otherwise, which
easily follows from (2.33). The number N �

r of copies of the representation ρ̃� is
given by

N �
r =

�(r−�)/3�∑
k=0

(−1)k
(
r

k

)(
2r − 3k − �− 2

r − 2

)
.

Example 19 (Irreducible unitary representations of Rn). Any irreducible
unitary representation of the additive group Rn has the form

x �→ ei(p,x), p ∈ Rn. (2.37)

The character group R̂n is accidentally isomorphic to Rn. Physicists call Rn the
space domain and R̂n the wavenumber domain. The character (2.37) is called
the plane wave.

2.6 Point Groups

Let (ρ, V ) be an orthogonal representation of the group O(3) in a real finite-
dimensional space. Consider ρ as a group action. Possible orbit types of this
action correspond to conjugacy classes of closed subgroups of O(3). Such sub-
groups are called the point groups. Therefore, a classification of the above classes
is of great interest.

Let r be a non-negative integer, and let (R3)⊗r be the tensor product of
r copies of the space R3 with the convention (R3)⊗0 = R1. Let V be an invariant
subspace of the orthogonal representation g �→ g⊗r of the group O(3). For any
tensor V ∈ V, the group

GV = { g ∈ O(3): g⊗rV = V }

is called the stabiliser or the isotropy subgroup of V by mathematicians and the
symmetry group of V by physicists. The orbit of V is the set { g⊗rV : g ∈ O(3) }.
Two tensors V1 and V2 lie on the same orbit if and only if their stabilisers are
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conjugate, that is, GV2 = gGV1g
−1 for some g ∈ O(3). As the tensor V runs over

its own orbit, the stabiliser GV runs over the conjugacy class

[GV0 ] = { gGV0g−1 : g ∈ O(3) }

of a fixed element V0 ∈ V. The conjugacy class of a stabiliser is called the isotropy
class or the symmetry class.

Theoretically, any conjugacy class of closed subgroups of the group O(3) can
serve as a symmetry class. Therefore, we need to study the classification of
conjugacy classes. Let I ∈ O(3) be the identity matrix.

Theorem 6. Every closed subgroup of O(3) is conjugate to precisely one group
of the following list:

● Type I, closed subgroups of SO(3) : SO(3), O(2), SO(2), T , O, I, {Dn : n ≥
2 }, {Zn : n ≥ 1 }.

● Type II, Cartesian products K × Zc2, where K is a group of type I and Zc2 =
{±I}.

● Type III: O(2)−, O−, {Dv
m : m ≥ 2 }, {Dh

2m : m ≥ 2 }, {Z−
2m : m ≥ 1 }.

The groups T of order 12, O of order 24 and I of order 60 are the group of
rotations that fix the regular tetrahedron, octahedron (or cube) and icosahedron
(or dodecahedron). They are called the tetrahedral, octahedral, and icosahedral
groups.

The dihedral group Dm of order 2m is the group of the symmetries of a regular
m-gon lying in the (x, y)-plane. It consists of rotations through 2kπ/m about the
z-axis (0 ≤ k ≤ m−1) and flips about symmetry axes of them-gon. The rotations
form the cyclic group Zm of order m.

Let π : O(3) → SO(3) be the homomorphism whose kernel is Zc2. For each
group G of type III there exist two groups L ⊂ K ⊂ SO(3) such that the quotient
K/L consists of two cosets, π(G) = K and G∩ SO(3) = L. In particular, O(2)−

corresponds to the choice L = SO(2) and K = O(2), O− corresponds to L = T
and K = O, Dv

m corresponds to L = Zm and K = Dm, Dh
2m corresponds to

L = Dm, K = D2m and Z−
2m corresponds to L = Zm and K = Z2m. The

restriction of π to G is an isomorphism between G and K.
Another classification is by systems:

● Triclinic: Z1 and Zc2.
● Monoclinic: Z2, Z−

2 and Z2 × Zc2.
● Orthotropic: D2, Dv

2 and D2 × Zc2.
● Cubic: T , T × Zc2, O, O− and O × Zc2.
● Icosahedral: I and I × Zc2.
● Transverse isotropic: SO(2), SO(2) × Zc2, O(2), O(2)− and O(2) × Zc2.
● Isotropic: SO(3) and O(3).



90 Mathematical Preliminaries

Table 2.1 Normalisers of point groups

G NO(3)(G)

Z1, Zc
2 , SO(3), O(3) O(3)

D2, D2 × Zc
2 , T , T × Zc

2 , O, O × Zc
2 O × Zc

2

{Zn : n ≥ 2 }, {Zn × Zc
2 : n ≥ 2 }, {Z−

2m : m ≥ 1 },
SO(2), SO(2) × Zc

2 , O(2), O(2)−, O(2) × Zc
2 O(2) × Zc

2

Dv
2 , Dh

4 D4 × Zc
2

{Dn : n ≥ 3 }, {Dn × Zc
2 : n ≥ 3 }, {Dv

n : n ≥ 3 }
{Dh

2n : n ≥ 3 } D2n × Zc
2

I, I × Zc
2 I × Zc

2

● n-gonal: {Dn : n ≥ 3 }, {Zn : n ≥ 3 }, {Dn × Zc2 : n ≥ 3 }, {Zn × Zc2 : n ≥ 3 },
{Dv

n : n ≥ 3 }.
● 2n-gonal: {Dh

2n : n ≥ 2 }, {Z−
2n : n ≥ 2 }.

The triclinic, monoclinic, orthorhombic, cubic, trigonal (n = 3), tetragonal
(n = 4) and hexagonal (n = 6) systems are called crystal systems. All classes of
the above systems are crystal classes. For each crystal class, there exist a lattice
{ ka+ lb+mc : k, l,m ∈ Z } generated by three linearly independent vectors a,
b and c such that any group of the class maps this lattice into itself.

According to Section 3.1, we consider a homogeneous V-valued random field
that is (G, ρ)-isotropic, where the group G lies between the stabiliser GV of some
tensor V ∈ V and the normaliser N(GV ). The normalisers of all point groups are
given in Table 2.1 adapted from Brock (2014).

2.7 Invariant Theory

Let V and W be two finite-dimensional linear spaces over the same field F. Let
(V, ρ) and (W,σ) be two representations of a group G. A mapping h : W → V

is called a covariant or form-invariant or a covariant tensor of the pair of
representations (V, ρ) and (W,σ), if

h(σ(g)w) = ρ(g)h(w), g ∈ G.

In other words, the diagram

W
h ��

σ

��

V

ρ

��
W

h �� V

is commutative.
If V = F1 and ρ is the trivial representation of G, then the correspond-

ing covariant scalars are called absolute invariants (or just invariants) of the
representation (W,σ), hence the name Invariant Theory. Note that the set
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F[W ]G of invariants is an algebra over the field F, that is, a linear space over F

with bilinear multiplication operation and the multiplication identity 1. The
product of a covariant h : W → V and an invariant f ∈ F[W ]G is again
a covariant. In other words, the covariant tensors of the pair of representa-
tions (V, ρ) and (W,σ) form a module over the algebra of invariants of the
representation (W,σ).

A mapping h : W → V is called homogeneous polynomial mapping of degree d
if for any v ∈ V the mapping w �→ (h(w),v) lies in Hd(W ). The mapping h

is called a polynomial covariant of degree d if it is a homogeneous polynomial
mapping of degree d and a covariant.

Let G be a closed subgroup of the group GL(W,F). Assume that its deter-
minant representation ρ is not trivial. The corresponding covariant tensors are
called relative covariant tensors.

Let (W,σ) be the defining representation of G, and (V, ρ) be the rth tensor
power of the defining representation. The corresponding covariant tensors are
said to have an order r. The covariant tensors of degree 0 and of order r of the
group O(n) are known as isotropic tensors.

The algebra of invariants and the module of covariant tensors were an object
of intensive research. The first general result was obtained by Gordan (1868).
He proved that for any finite-dimensional complex representation of the group
G = SL(2,C) the algebra of invariants and the module of covariant tensors are
finitely generated. In other words, there exists an integrity basis: a finite set
of invariant homogeneous polynomials I1, . . . , IN such that every polynomial
invariant can be written as a polynomial in I1, . . . , IN . An integrity basis is called
minimal if none of its elements can be expressed as a polynomial in the others. A
minimal integrity basis is not necessarily unique, but all minimal integrity bases
have the same amount of elements of each degree.

The algebra of invariants is not necessarily free. Some polynomial relations
between generators, called syzygies, may exist.

Hilbert (1890) proved that if a finite-dimensional representation of a group
SL(n,C) or GL(2,C) is completely reducible then the algebra of invariants is
finitely generated. Hilbert’s proof was not constructive and was criticised by
Gordan. In response to Gordan’s criticism, Hilbert (1893) described a way to con-
struct generators for the algebra of invariants. In fact, these two papers formed
the foundation of modern commutative algebra.

Hilbert’s results remain true for a wide class of groups and their represen-
tations, including real finite-dimensional representations of compact groups.
Moreover, in this case the elements of an integrity basis separate the orbits of
the corresponding group action. This means the following: if In(x1) = In(x2) for
all n then x1 and x2 lie on the same orbit. This property is so important that it
rises a definition. A finite set of invariant (not necessarily polynomial) functions
is called a functional basis if this set separates the orbits. A functional basis is
minimal if no proper subset of it is a functional basis.
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Any integrity basis is a functional basis. The converse is wrong. For example,
let G = O(3), let W = R3 and let ρ(g) = g. The one-element set {‖x‖2} is
an integrity basis. The one-element set {‖x‖4} is a functional basis but not an
integrity basis.

The importance of polynomial invariants can be explained by the following
result. Let G be a closed subgroup of the group O(3), the group of symmetries
of a material. Let (V, ρ), (V1, ρ1), . . . , (VN , ρN ) be finitely many orthogonal
representations of G in real finite-dimensional spaces. Let T : V1 ⊕ · · ·⊕VN → V

be an arbitrary (say, measurable) covariant of the pair ρ and ρ1 ⊕ · · · ⊕ ρN .
Let { Ik : 1 ≤ k ≤ K } be an integrity basis for polynomial invariants of the
representation ρ1 ⊕ · · · ⊕ ρN , and let {Tl : 1 ≤ l ≤ L } be an integrity basis for
polynomial covariant tensors of the pair ρ and ρ1⊕· · ·⊕ρN . Following Wineman
& Pipkin (1964), we call Tl basic covariant tensors.

Theorem 7 (Wineman & Pipkin (1964)). A function T : V1 ⊕ · · · ⊕ VN → V is
a measurable covariant of the pair ρ and ρ1 ⊕ · · · ⊕ ρN if and only if it has the
form

T(T1, . . . ,TN ) =
L∑
l=1

ϕl(I1, . . . , IK)Tl(T1, . . . ,TN ),

where ϕl are real-valued measurable functions of the elements of an integrity
basis.

In 1939 in the first edition of Weyl (1997), Hermann Weyl proved that any
polynomial covariant of degree d and of order r of the group O(n) is a linear com-
bination of products of Kronecker’s deltas δij and second degree homogeneous
polynomials xixj .

Example 20 (Ogden tensors). Let ν be a non-negative integer. The Ogden
tensor Iν of rank 2ν + 2 is determined inductively as

I0ij := δij , I1ijk� :=
1
2
(δikδj� + δi�δjk),

Iνi1···i2ν+2
:= ν−1(I1i1pi3i4I

ν−1
pi2i5···i2ν+2

+ · · · + I1i1pi2ν+1i2ν+2
Iν−1
pi2···i2ν−1i2ν

),

where there is a summation over p. In what follows we will omit the upper index.
The above tensors are isotropic tensors of order 2ν+2. Moreover, they are basic

covariant tensors of degree 0 and of order 2ν + 2 of the pair of representations
(S2ν+2(Rn),S2ν+2(g)) and (Rn, g).

Example 21 (Symmetric isotropic tensors). Let d = 3, let (W,σ) = (R3, g) be
the defining representation of the group O(3), and let (V, ρ) = ((R3)⊗2r, g⊗2r)
be the 2rth tensor power of the defining representation. The number of different
products of r Kronecker’s deltas is
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N(2r) =
(2r)!
r!2r

,

which is equal to the number of different ways to distribute the 2r indices among
r Kronecker’s deltas. In particular,N(0) = 1, the only rank 0 isotropic tensor is 1,
and the representation (R1, g⊗0) contains one copy of the trivial representation.
Next, N(2) = 1, the only rank 2 isotropic tensor is

L1
ij = δij , (2.38)

and the representation ((R3)⊗2, g⊗2) contains 1 copy of the trivial representation.
When r = 2, we have N(4) = 3, the representation ((R3)⊗4, g⊗4) contains

three copies of the trivial representation, and the three rank 4 isotropic tensors
are δijδkl, δikδjl and δilδjk. Now, put V = S2(S2(R3)) and ρ = S2(S2(g)). We
have S2(S2(R3)) = P+

Σ ((R3)⊗4), where P+
Σ is the linear operator (2.11), and

where Σ is the group introduced in Example 10. By (2.11), the isotropic tensors
for this case are the sums of the above three tensors over the orbits of the action
(2.8) of the group Σ on the set of isotropic tensors. It is easy to check that the
above action has two orbits, and the isotropic tensors are

L1
ijkl = δijδkl, L2

ijkl = 2Iijkl. (2.39)

When r = 3, we have N(6) = 15 and the representation ((R3)⊗3, g⊗3) con-
tains 15 copies of the trivial representation. To find symmetric isotropic tensors,
consider a group Σp of order 8, generated by transpositions (ij), (i′j′) and
(ii′)(jj′)(kk′) of the above indices. The group Σp acts on the set of isotropic
tensors. The sums of isotropic tensors over each orbit are the symmetric isotropic
tensors. The results of calculations are as follows:

L1 = δijδkk′δi′j′ ,

L2 = 2δkk′Iiji′j′ ,

L3 = 2(δijIkj′i′k′ + δi′j′Iijkk′),

L4 = 2(δikIjj′i′k′ + δjkIiji′k′),

L5 = 2(δkj′Iiji′k′ + δki′Iijj′k′).

(2.40)

The situation becomes quite different when r = 4. We have N(8) = 105,
but the representation ((R3)⊗8, g⊗8) contains only 91 copies of the trivial rep-
resentation. This means that 105 − 91 = 14 rank 8 isotropic tensors must be
linear combinations of 91 linearly independent tensors. In other words, 14 syzy-
gies should exist. Indeed, Kearsley & Fong (1975) listed 14 linear combinations
(reduction equations) of products which are identically zero.

Consider the subgroup Σ′ ⊂ Σ8 of order 16 generated by the transpositions
(ij), (kl), (i′j′) and (k′l′). Monchiet & Bonnet (2011) call the elements of this
group minor symmetries. They reported 17 orbits of the group Σ′ acting on the
set of 105 isotropic tensors by (2.8), and found one syzygy.

We are interested in another subgroup Σe ⊂ Σ8 of order 128 generated by
the transpositions (ij), (kl), (i′j′), (k′l′) and products (ik)(il), (i′k′)(j′l′) and
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Table 2.2 Σe-symmetric rank 8 isotropic tensors

Tensor Value

L1
i···l′ δijδklδi′j′δk′l′

L2
i···l′ 2(δijδklIi′j′k′l′ + δi′j′δk′l′ Iijkl)

L3
i···l′ 2(δij(δi′j′ Iklk′l′ + δk′l′ Ikli′j′ ) + δkl(δi′j′ Iijk′l′ + δk′l′ Iiji′j′ ))

L
4
i···l′ 4IijklIi′j′k′l′

L5
i···l′ 8(δijIkli′j′k′l′ + δklIiji′j′k′l′ + δi′j′ Iijklk′l′ + δk′l′ Iijkli′j′ )

L6
i···l′ 4(Iiji′j′ Iklk′l′ + Iijk′l′ Ikli′j′ )

L7
i···l′ 4(Iiji′k′ Iklj′l′ + Iiji′l′ Iklj′k′ + Iijj′k′ Ikli′l′ + Iijj′l′ Ikli′k′ )

L30
i···l′ 4(Iijkk′ Ii′j′ll′ + Iijll′ Ii′j′lk′ + Iijlk′ Ii′j′kl′ + Iijll′ Ii′j′kk′

+ Iijki′ Ik′l′lj′ + Iijkj′ Ik′l′li′ + Iijli′ Ik′l′kj′ + Iijlj′ Ik′l′ki′ )

(ii′)(jj′)(kk′)(ll′). Eight orbits have been found. The sums of elements over
each orbit are Σe-symmetric rank 8 isotropic tensors shown in Table 2.2. We
use the short notation i · · · l′ := ijkli′j′k′l′. Σe-symmetric rank 8 isotropic ten-
sors found by Lomakin (1965) are shown in bold. We also found one reduction
equation:

L30
i···l′ = 8L1

i···l′ − 4L2
i···l′ − 4L3

i···l′ + 2L4
i···l′ + 2L5

i···l′ + 2L6
i···l′ − L7

i···l′ .

The enumeration of isotropic tensors and covariant tensors is so chosen in order
to write down Equation (3.98) in a compact form.

Example 22 (Symmetric covariant tensors). Consider covariant tensors of
degree 2 and of order 2. For the pair of representations ((R3)⊗2, g⊗2) and (R3, g),
the only possible one is

‖x‖2L2
ij(x) = xixj , (2.41)

and the representation ((R3)⊗2, g⊗2) indeed contains one copy of the irreducible
representation ρ2 of the group O(3). The same remains true for the pair of
representations (S2(R3),S2(g)) and (R3, g).

In the case of degree 2 and of order 4, for the pair of representations
((R3)⊗4, g⊗4) and (R3, g) we have six covariant tensors:

δilxjxk, δjkxixl, δjlxixk, δikxjxl, δklxixj , δijxkxl.

The representation ((R3)⊗4, g⊗4) of the group O(3) indeed contains six copies of
the representation ρ2.

Now, put (V, ρ) = (S2(S2(R3)),S2(S2(g))). We have S2(S2(R3)) =
P+
Σ ((R3)⊗4), where P+

Σ is the linear operator (2.11), and where Σ is the group
introduced in Example 10. By (2.11), the symmetric covariant tensors for this
case are the sums of the above six covariant tensors over the orbits of the action

σ(xi1xi2δi3i4) := xσ−1(i1)xσ−1(i2)δσ−1(i3)σ−1(i4), σ ∈ Σ
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Table 2.3 Σp-symmetric covariant tensors of degree 2 and of
order 6.

Tensor Value

L6(x) δijδi′j′xkxk′

L7(x) δi′j′δkk′xixj + δijδkk′xi′xj′

L8(x) 2Iiji′j′xkxk′

L9(x) δi′j′ (δjkxixk′ + δikxjxk′ ) + δij(δj′k′xi′xk + δi′k′xj′xk)

L10(x) δjk(δj′k′xixi′ + δi′k′xixj′ ) + δik(δj′k′xjxi′ + δi′k′xjxj′ )

L11(x) δi′j′ (δjk′xixk + δik′xjxk) + δij(δkj′xi′xk′ + δki′xj′xk′ )

L12(x) δjk′ (δkj′xixi′ + δki′xixj′) + δik′ (δkj′xjxi′ + δki′xjxj′ )

L13(x) δkk′ (δjj′xixi′ + δji′xixj′ + δij′xjxi′ + δii′xjxj′ )

L14(x) 2(Ii′j′k′kxixj + Iijkk′xi′xj′ )

L15(x) 2(Ijki′j′xixk′ + Iiki′j′xjxk′ + Iijj′k′xkxi′ + Iiji′k′xkxj′)

L22(x) (δji′δj′k′ + δjj′δi′k′ )xixk + (δii′δj′k′ + δij′δi′k′ )xjxk

+ 2(Iijkj′xi′xk′ + Iijki′xj′xk′ )

of the group Σ on the set of covariant tensors. It is easy to check that the above
action has two orbits, and the symmetric covariant tensors are

‖x‖2L3
ijkl(x) = δilxjxk + δjkxixl + δjlxixk + δikxjxl,

‖x‖2L4
ijkl(x) = δklxixj + δijxkxl.

(2.42)

In the case of degree 2 and of order 6, for the pair of representations
((R3)⊗6, g⊗6) and (R3, g) we have 45 covariant tensors. Under the action of the
group Σp, we obtain the symmetric covariant tensors shown in Table 2.3, where
we omitted ‖x‖2 in the first column.

We found a syzygy: the symmetric covariant tensor L22(x) is expressed as a
linear combination of the remaining tensors as follows:

L22(x) = 4L1 − 2L2 − 2L3 + L4 + L5 − 4L6(x) − 4L7(x) + 2L8(x)

+ 2L9(x) − L10(x) + 2L11(x) − L12(x) + 2L13(x) + 2L14(x)

− L15(x).

In the case of degree 2 and of order 8, for the pair of representations
((R3)⊗8, g⊗8) and (R3, g) we have 105×4 = 420 covariant tensors (in each of the
105 isotropic tensors one can change any term δi1i2 with xi1xi2). We have found
13 orbits of the group Σe of order 128 of Example 21. The sums of elements on
each orbit are shown in Table 2.4. We found three reduction equations:

L31
i···l′(x) = 16L1

i···l′ − 4L2
i···l′ − 4L3

i···l′ + L5
i···l′ − 12L8

i···l′(x) + 2L9
i···l′(x)

+ 4L10
i···l′(x) + 4L11

i···l′(x) + 2L13
i···l′(x) − L14

i···l′(x),

L32
i···l′(x) = 8L1

i···l′ − 4L2
i···l′ + 2L4

i···l′ − 2L6
i···l′ + L7

i···l′ − 4L8
i···l′(x)

+ 2L9
i···l′(x) + 2L10

i···l′(x) − L12
i···l′(x) − 2L13

i···l′(x) + L14
i···l′(x)

+ L15
i···l′(x) − 1

2
L16
i···l′(x) + 2L17

i···l′(x),
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Table 2.4 Σe-symmetric basic covariant tensors of degree 2 and of order 8

Covariant Value

L8
i···l′ (x) δijδkl(δi′j′xk′xl′ + δk′l′xi′xj′ ) + δi′j′δk′l′ (δijxkxl + δklxixj)

L
9
i···l′ (x) 2(Iijkl(δi′j′xk′xl′ + δk′l′xi′xj′ ) + Ii′j′k′l′ (δijxkxl + δklxixj))

L10
i···l′ (x) δijδkl(δi′k′xj′xl′ + δi′l′xj′xk′ + δj′k′xi′xl′ + δj′l′xi′xk′ )

+δi′j′δk′l′ (δikxjxl + δilxjxk + δjkxixl + δjlxixk)

L11
i···l′ (x) δijδi′j′ (δkk′xlxl′ + δkl′xlxk′ + δlk′xkxl′ + δll′xkxk′ )

+δijδk′l′ (δki′xlxj′ + δkj′xlxj′ + δli′xkxj′ + δlj′xkxi′ )

+δklδi′j′ (δik′xjxl′ + δjk′xjxl′ + δil′xjxk′ + δjl′xixk′ )

+δklδk′l′ (δii′xjxj′ + δij′xjxi′ + δji′xixj′ + δjj′xixi′ )

L12
i···l′ (x) 2(Iijkl(δi′k′xj′xl′ + δi′l′xj′xk′ + δj′k′xi′xl′ + δj′l′xi′xk′ )

+Ii′j′k′l′ (δikxjxl + δilxjxk + δjkxixl + δjlxixk))

L13
i···l′ (x) 2((δijIkli′j′ + δklIiji′j′ )xk′xl′ + (δijIklk′l′ + δklIijk′l′ )xi′xj′

+(δi′j′ Iijk′l′ + δk′l′ Iiji′j′ )xkxl + (δi′j′ Iklk′l′ + δk′l′ Ikli′j′ )xixj)

L14
i···l′ (x) 2((δijIkli′k′ + δklIiji′k′ )xj′xl′ + (δijIkli′l′ + δklIiji′l′ )xj′xk′

+(δijIklj′k′ + δklIijj′k′ )xi′xl′ + (δijIklj′l′ + δklIijj′l′ )xi′xk′

+(δi′j′ Iikk′l′ + δk′l′ Iiki′j′ )xjxl + (δi′j′ Iilk′l′ + δk′l′ Iili′j′ )xjxk

+(δi′j′ Ijkk′l′ + δk′l′ Ijki′j′ )xixl + (δi′j′ Ijlk′l′ + δk′l′ Ijli′j′ )xixk)

L15
i···l′ (x) 8(Iijkli′j′xk′xl′ + Iijklk′l′xi′xj′ + Iiji′j′k′l′xkxl + Ikli′j′k′l′xixj)

L16
i···l′ (x) 8(Iijkli′k′xj′xl′ + Iijkli′l′xj′xk′ + Iijklj′k′xi′xl′ + Iijklj′l′xi′xk′

+Iiki′j′k′l′xjxl + Iili′j′k′l′xjxk + Ijki′j′k′l′xixl + Ijli′j′k′l′xixk)

L17
i···l′ (x) 2(Iiji′j′ (δkk′xlxl′ + δkl′xlxk′ + δlk′xkxl′ + δll′xkxk′ )

+Iijk′l′ (δki′xlxj′ + δkj′xlxi′ + δli′xkxj′ + δlj′xkxi′

+Ikli′j′ (δik′xjxl′ + δil′xjxk′ + δjk′xixl′ + δjl′xixk′ )

+Iklk′l′ (δii′xjxj′ + δij′xjxi′ + δji′xixj′ + δjj′xixi′ )

L31
i···l′ (x) δij(2Iki′k′l′xlxj′ + 2Ikj′k′l′xlxi′ + 2Ili′k′l′xkxj′ + 2Ili′k′l′xkxi′

+(δki′δj′k′ + δkj′δi′k′ )xlxl′ + (δki′δj′l′ + δkj′δi′l′ )xlxk′

+(δli′δj′k′ + δlj′δi′k′ )xkxl′ + (δli′δj′l′ + δlj′δi′l′ )xkxk′ )
+δkl(2Iii′k′l′xjxj′ + 2Iij′k′l′xjxi′ + 2Iji′k′l′xixj′ + 2Ijj′k′l′xixi′

+(δii′δj′l′ + δij′δi′k′ )xjxl′ + (δii′δj′l′ + δij′δi′l′ )xjxk′

+(δji′δj′k′ + δjj′δi′k′ )xixl′ + (δji′δj′l′ + δjj′δi′l′ )xixk′ )

+δi′j′ (2Iijkk′xlxl′ + 2Iijkl′xlxk′ + 2Iijlk′l′xkxl′ + 2Iijll′xkxk′

+(δikδlk′ + δilδk′k′ )xjxl′ + (δikδll′ + δilδkl′ )xjxk′

+(δjkδlk′ + δjlδk′k′ )xixl′ + (δjkδll′ + δjlδkl′ )xixk′ )

+δk′l′ (2Iijki′xlxj′ + 2Iijkj′xlxi′ + 2Ijili′xkxj′ + 2Ijjlj′xkxi′

+(δikδlj′ + δilδkj′ )xjxi′ + (δikδlk′ + δilδkk′ )xjxl′

+(δjkδli′ + δjlδki′ )xixj′ + (δjkδlj′ + δjlδkj′ )xixi′ )

L32
i···l′ (x) 2((Iiji′k′δkj′ + Iijj′k′δki′ )xlxl′ + (Iiji′l′δkj′ + Iijj′l′δki′ )xlxk′

+(Iiji′k′δkl′ + Iiji′l′δkk′ )xlxj′ + (Iijj′k′δkl′ + Iijj′l′δkk′ )xlxi′

+(Iiji′k′δlj′ + Iiji′k′δli′ )xkxl′ + (Iiji′l′δlj′ + Iijj′l′δli′ )xkxk′

+(Iiji′k′δll′ + Iiji′l′δlk′ )xkxj′ + (Iijj′k′δll′ + Iijj′l′δlk′ )xkxi′

+(Ikli′k′δjj′ + Iklj′k′δii′ )xjxl′ + (Ikli′l′δij′ + Iklj′l′δii′ )xjxk′

+(Ikli′k′δil′ + Ikli′l′δik′ )xjxj′ + (Iklj′k′δil′ + Iklj′l′δik′ )xjxi′

+(Ikli′k′δjj′ + Iklj′k′δji′ )xixl′ + (Ikli′l′δjj′ + Iklj′l′δji′ )xixk′

+(Ikli′k′δjl′ + Ikli′l′δjk′ )xixj′ + (Iklj′k′δjl′ + Iklj′l′δjk′ )xixi′ )
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Table 2.4 (Cont.)

Covariant Value

L33
i···l′ (x) 2(δik(Iji′k′l′xlxj′ + Ijj′i′k′xlxl′ + Ijj′i′l′xlxk′ + Ijj′k′l′xlxi′

+Ili′j′k′xjxl′ + Ili′k′l′xjxj′ + Ili′j′l′xjxk′ + Ilj′k′l′xjxi′ )

+δil(Iji′k′l′xkxj′ + Ijj′i′k′xkxl′ + Ijj′i′l′xkxk′ + Ijj′k′l′xkxi′

+Iki′k′l′xjxj′ + Ikj′i′k′xjxl′ + Iki′j′l′xjxk′ + Ikj′k′l′xjxi′ )

+δjk(Iij′i′k′xlxl′ + Iii′k′l′xlxj′ + Iij′i′l′xlxk′ + Iij′k′l′xlxi′

+Ili′j′k′xixl′ + Ili′k′l′xixj′ + Ili′j′l′xixk′ + Ilj′k′l′xixi′ )

+δjl(Iii′k′l′xkxj′ + Iij′i′k′xkxl′ + Iij′i′l′xkxk′ + Iij′k′l′xkxi′

+Iki′k′l′xixj′ + Ikj′i′k′xjxl′ + Iki′j′l′xlxk′ + Ikj′k′l′xixi′ ))

L33
i···l′(x) = 24L1

i···l′ − 4L2
i···l′ − 8L3

i···l′ − 2L4
i···l′ + 2L5

i···l′ + 2L6
i···l′ − L7

i···l′

− 12L8
i···l′(x) − 2L9

i···l′(x) + 2L10
i···l′(x) + 4L11

i···l′(x) + 3L12
i···l′(x)

+ 2L13
i···l′(x) − L14

i···l′(x) + L15
i···l′(x) − 1

2
L16
i···l′(x).

In the case of degree 4 and of order 4 we have only one covariant:

‖x‖4L5
ijkl(x) = xixjxkxl. (2.43)

In the case of degree 4 and of order 6, for the pair of representations
((R3)⊗6, g⊗6) and (R3, g) we have 15 covariant tensors. Under Σp, we found
the following symmetric covariant tensors.

‖x‖4L16(x) = δkk′xixjxi′xj′ ,

‖x‖4L17(x) = δijxkxi′xj′xk′ + δi′j′xixjxkxk′ ,

‖x‖4L18(x) = δii′xjxkxj′xk′ + δij′xjxkxi′xk′ + δji′xixkxj′xk′

+ δjj′xixkxi′xk′ ,

‖x‖4L19(x) = δik′xjxkxi′xj′ + δjk′xixkxi′xj′ + δki′xixjxj′xk′

+ δkj′xixjxi′xk′ ,

‖x‖4L20(x) = δikxjxi′xj′xk′ + δjkxixi′xj′xk′ + δi′k′xixjxkxj′

+ δj′k′xixjxkxi′ .

(2.44)

In the case of degree 4 and of order 8, we have 6× 35 = 210 covariant tensors
(each of N(4) = 6 products of 2 Kronecker’s deltas can be combined with

(
8
4

)
=

35 products of the form xi1xi2xi3xi4). We found 10 orbits of the group Σ. The
sums of elements on each orbit are shown in Table 2.5.

We found two reduction equations:

L34
i···l′(x) = −4L8

i···l′(x) + 2L9
i···l′(x) + 2L10

i···l′(x) − L12
i···l′(x) + 2L13

i···l′(x)

− L14
i···l′(x) − L15

i···l′(x) +
1
2
L16
i···l′(x) + 8L19

i···l′(x) − 4L21
i···l′(x)

+ 2L23
i···l′(x) − 4L24

i···l′(x) + 2L25
i···l′(x),
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Table 2.5 Σ-symmetric basic covariant tensors of degree 4 and of order 8

Symbol Value

L18
i···l′ (x) δijδklxi′xj′xk′xl′ + δi′j′δk′l′xixjxkxl

L
19
i···l′ (x) (δijxkxl + δklxixj)(δi′j′xk′xl′ + δk′l′xi′xj′ )

L20
i···l′ (x) 2(Iijklxi′xj′xk′xl′ + Ii′j′k′l′xixjxkxl)

L21
i···l′ (x) (δijxkxl + δklxixj)(δi′k′xj′xl′ + δi′l′xj′xk′ + δj′k′xi′xl′ + δj′l′xi′xk′ )

+(δi′j′xk′xl′ + δk′l′xi′xj′ )(δikxjxl + δilxjxk + δjkxixl + δjlxixk)

L22
i···l′ (x) δij(δki′xlxj′xk′xl′ + δkj′xlxi′xk′xl′ + δkk′xlxi′xj′xl′ + δkl′xlxi′xj′xk′

+δli′xkxj′xk′xl′ + δlj′xkxi′xk′xl′ + δlk′xkxi′xj′xl′ + δll′xkxi′xj′xk′ )

+δkl(δii′xjxj′xk′xl′ + δij′xjxi′xk′xl′ + δik′xjxi′xj′xl′ + δil′xjxi′xj′xk′

+δji′xixj′xk′xl′ + δjj′xixi′xk′xl′ + δjk′xixi′xj′xl′ + δjl′xixi′xj′xk′ )

+δi′j′ (δik′xjxkxlxl′ + δjk′xixkxlxl′ + δkk′xixjxlxl′ + δlk′xixjxkxl′

+δil′xkxl′xj′xk′ + δjl′xkxl′xi′xk′ + δkl′xixjxk′xl′ + δll′xixjxkxk′ )

+δk′l′ (δii′xjxkxlxj′ + δji′xixkxj′xl′ + δki′xjxjxlxj′ + δli′xixjxkxj′

+δij′xjxkxlxi′ + δjj′xixkxlxi′ + δkj′xixjxlxi′ + δlj′xixjxkxi′ )

L
23
i···l′ (x) (δikxjxl + δilxjxk + δjkxixl + δjlxixk)

×(δi′k′xj′xl′ + δi′l′xj′xk′ + δj′k′xi′xl′ + δj′l′xi′xk′ )

L24
i···l′ (x) 2(Iiji′j′xkxlxk′xl′ + Iijk′l′xkxlxi′xj′

+Ikli′j′xixjxk′xl′ + Iklk′l′xixjxi′xj′ )

L25
i···l′ (x) 2[(Iiji′k′xj′xl′ + Iiji′l′xj′xk′ + Iijj′k′xi′xl′ + Iijj′l′xi′xk′ )xkxl

+(Iiki′j′xk′xl′ + Iikk′l′xi′xj′ )xjxl + (Iili′j′xk′xl′ + Iilk′l′xi′xj′ )xjxk

+(Ijki′j′xk′xl′ + Ijkk′l′xi′xj′ )xixl + (Ijli′j′xk′xl′ + Ijlk′l′xi′xj′ )xjxk

+(Ikli′k′xj′xl′ + Ikli′l′xj′xk′ + Iklj′k′xi′xl′ + Iklj′l′xi′xk′ )xixj ]

L34
i···l′ (x) 2[(Iiki′k′xj′xl′ + Iiki′l′xj′xk′ + Iikj′k′xi′xl′ + Iikj′l′xi′xk′ )xjxl

+(Iili′k′xj′xl′ + Iili′l′xj′xk′ + Iilj′k′xi′xl′ + Iilj′l′xi′xk′ )xjxk

+(Ijki′k′xj′xl′ + Ijki′l′xj′xk′ + Ijkj′k′xi′xl′ + Ijkj′l′xi′xk′ )xixl

+(Ijli′k′xj′xl′ + Ijli′l′xj′xk′ + Ijlj′k′xi′xl′ + Ijlj′l′xi′xk′ )xixk

L35
i···l′ (x) 2[Ilj′k′l′xixjxkxi′ + (δjkδll′ + δjlδkl′ )xixi′xj′xk′

+Ili′k′l′xixjxkxj′ + (δikδll′ + δilδkl′ )xjxi′xj′xk′

+Iijll′xkxi′xj′xk′ + (δli′δj′l′ + δlj′δi′l′ )xixjxkxk′

+Iijkl′xlxi′xj′xk′ + (δli′δj′k′ + δlj′δi′k′ )xixjxkxl′

+Ikjk′l′xixjxlxi′ + (δjkδlk′ + δjlδkk′ )xixi′xj′xl′

+Iki′k′l′xixjxlxj′ + (δikδlk′ + δilδkk′ )xjxi′xj′xl′

+Iijlk′l′xkxi′xj′xl′ + (δki′δj′l′ + δkj′δi′l′ )xixjxlxk′

+Iijkk′xlxi′xj′xl′ + (δki′δj′l′ + δkj′δi′l′ )xixjxlxl′

+Iji′k′l′xixkxlxi′ + (δjkδlj′ + δjlδkj′ )xixi′xk′xl′

+Iji′k′l′xixkxlxj′ + (δikδlj′ + δilδkj′ )xjxi′xk′xl′

+Iijlj′xkxi′xk′xl′ + (δji′δj′l′ + δjj′δi′l′ )xixkxlxk′

+Iijkj′xlxi′xk′xl′ + (δji′δj′l′ + δjj′δi′k′ )xixkxlxl′

+Iij′k′l′xjxkxlxi′ + (δikδli′ + δjlδki′ )xixj′xk′xl′

+Iii′k′l′xjxkxlxj′ + (δikδli′ + δilδki′ )xjxj′xk′xl′

+Iijli′xkxj′xk′xl′ + (δii′δj′l′ + δij′δi′l′ )xjxkxlxk′

+Iijki′xlxj′xk′xl′ + (δii′δj′k′ + δij′δi′k′ )xjxkxl′xl′ ]
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Table 2.6 Σe-symmetric basic covariant tensors of degree 6 and of order 8

Symbol Value

L26
i···l′ (x) (δijxkxl + δklxixj)xi′xj′xk′xl′

+(δi′j′xk′xl′ + δk′l′xi′xj′)xixjxkxl

L
27
i···l′ (x) (δikxjxl + δilxjxk + δjkxixl + δjlxixk)xi′xj′xk′xl′

+(δi′k′xj′xl′ + δi′l′xj′xk′ + δj′k′xi′xl′ + δj′l′xi′xk′ )xixjxkxl

L28
i···l′ (x) (δii′xj′xk′xl′ + δij′xi′xk′xl′ + δik′xi′xj′xl′

+δil′xi′xj′xk′ )xjxkxl + (δji′xj′xk′xl′ + δjj′xi′xk′xl′

+δjk′xi′xj′xl′ + δjl′xi′xj′xk′ )xixkxl

+(δki′xj′xk′xl′ + δkj′xi′xk′xl′ + δkk′xi′xj′xl′

+δkl′xi′xj′xk′ )xixjxl + (δli′xj′xk′xl′ + δlj′xi′xk′xl′

+δlk′xi′xj′xl′ + δll′xi′xj′xk′ )xixjxk

L35
i···l′(x) = 4L8

i···l′(x) − 2L9
i···l′(x) − 2L13

i···l′(x) + L15
i···l′(x) − 8L18

i···l′(x)

− 8L19
i···l′(x) + 4L20

i···l′(x) + 2L21
i···l′(x) + 2L22

i···l′(x) + 4L24
i···l′(x)

− L25
i···l′(x).

In the case of degree 6 and of order 6, we have only one symmetric covariant
tensor:

‖x‖4L21(x) = xixjxkxi′xj′xk′ . (2.45)

In the case of degree 6 and of order 8, we have
(
8
2

)
= 28 covariant tensors. We

found 3 orbits of the group Σe and no reduction equations. The sums of elements
on each orbit are shown in Table 2.6.

Finally, the only covariant of degree 8 and of order 8 is

‖x‖8L29i···l′(x) = xixjxkxlxi′xj′xk′xl′ . (2.46)

2.8 Convex Compacta

Let V be a real vector space. A subset K ⊂ V is called convex if for all u, v ∈ K

and for all θ ∈ (0, 1) the point

w := (1 − θ)u+ θv (2.47)

lies in K.
An affine subspace of the space V is the set

G := {v0 +w : w ∈W },

where v0 ∈ V , and W is a subspace of V . The dimension of G is the dimension
of W . The dimension of a convex set K is the dimension of the smallest affine
subspace that contains K.
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Let v1, . . . , vm be vectors in V . A convex combination of the vectors v1, . . . ,
vm is

v :=
m∑
i=1

θivi, θi ≥ 0,
m∑
i=1

θi = 1.

The convex hull of the set F is the set of all convex combinations of vectors
of F . The closed convex hull of the set F is the closure of its convex hull in the
smallest affine subspace that contains K.

A point w ∈ K is called an extreme point of K if the representation (2.47) is
possible only if u = v.

A simplex is the closed convex hull of n+1 points that do not lie in any affine
subspace of dimension n− 1.

Theorem 8 (Minkowski). Any compact convex set coincides with the closed
convex hull of the set of its extreme points.

Theorem 9 (Carathéodory). Each point of a compact convex set K of dimen-
sion n can be represented as a convex combination of at most n + 1 extreme
points of K. The above representation is unique if and only if K is a simplex.

2.9 Random Fields

Let (Ω,F,P) be a probability space, i.e. Ω is a set, F is a σ-field of subsets of Ω,
and P is a probability measure on F. Let V be a finite-dimensional linear space
consisting of tensors, and let B(V) be the σ-field of Borel sets of V. A mapping
T : Ω → V is called a random tensor if it is measurable, i.e. for any Borel set B
we have T−1(B) ∈ B(V). If V consists of scalars, the term random variable is
then used instead of random scalar.

The expected value of a random tensor T is the integral

E[T ] :=
∫
Ω

T (ω) dP(ω),

if it exists.
A random field on a real finite-dimensional affine space E is a function of two

variables T : E × Ω → V such that for any A ∈ E the function T (A,ω) is a
random tensor.

Let V be the underlying space of E. Let ‖·‖V (resp. ‖·‖V) be the norm on V

(resp. V) generated by an inner product. A random field T (A) is called second-
order if for any A ∈ E we have

E‖T (A)‖2
V <∞.

A second-order random field is called mean-square continuous if for any O ∈ E

we have

lim
‖A−O‖V →0

E‖T (A) − T (O)‖2
V = 0.
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In what follows we consider only second-order mean-square continuous random
fields.

Consider the following quantity:

〈T (A)〉 := E[T (A)].

Mathematicians call this quantity the mean value of the random field T (A),
physicists call it the one-point correlation tensor. If V is a one-dimensional space,
we use the term one-point correlation function instead. In what follows we will
use physical terms and physical notation, 〈T (A)〉.

A random field T (A) is called centred if 〈T (A)〉 = 0.
Let J be the identity operator in V if V is real, and a real structure on V if

V is complex. The two-point correlation tensor (two-point correlation function if
V is a one-dimensional space) is the following quantity:

〈T (A),T (B)〉 := E[J(T (A) − 〈T (A)〉) ⊗ (T (B) − 〈T (B)〉)].

A random field T (A) is called homogeneous if its one-point correlation tensor is
a constant, and its two-point correlation tensor 〈T (A),T (B)〉 depends only on the
vector B−A. The physical sense of this definition is as follows: the characteristics
of the corresponding physical system do not depend on the location of the origin
O of the affine frame.

Let V be a complex linear space, let V̂ be the wavenumber domain, and let
B(V̂ ) be the σ-field of Borel sets of the wavenumber domain. A mapping μ that
maps B(V̂ ) to the set of all Hermitian non-negative-definite operators on V is
called a Radon measure if for any V ∈ V the mapping (μ(A)v,v) : B(V̂ ) → R1

is a finite Radon measure.
Let J be a real structure on a complex linear space W , and let V+ be the real

linear span of the eigenvectors of J with eigenvalue 1. The linear space of all
Hermitian operators on V is isomorphic to V+ ⊗ V+ = S2(V+) ⊕ Λ2(V+). Let �
be the linear operator in V+ ⊗ V+ for which S2(V+) is the set of eigenvectors
with eigenvalue 1, and Λ2(V+) is the set of eigenvectors with eigenvalue −1 (this
is just the coordinate-free definition of the transposed matrix).

Theorem 10. Formula

〈T (A),T (B)〉 =
∫
V̂

ei(p,B−A) dF (p) (2.48)

establishes a one-to-one correspondence between the set of two-point correlation
tensors of homogeneous mean-square continuous W -valued random fields on E

and the set of Radon measures F on B(V̂ ) taking values in the set of all Her-
mitian non-negative-definite operators on W . If the random field takes values in
W+, then the measure F satisfies the following condition

F (−A) = F (A)�, A ∈ B(V̂ ), (2.49)

where −A := {−p : p ∈ A }.
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Let X be a set, and let v(x) be a centred random field on X taking values
in a complex finite-dimensional linear space V . Let (·, ·) be an inner product
in V , and let J be a real structure on V . Let Λ be a set, L be a σ-field of
subsets of Λ, and let F be a measure on L taking values in the set of Hermitian
non-negative-definite operators on V . Let F0 be the following measure:

F0(A) := trF (A), A ∈ L.

Let f(x, λ) be a complex-valued function such that for any fixed x0 ∈ X the
function f(x0, λ) is square integrable with respect to F0. Let L2(f) be the closed
linear span of the set { f(x, λ) : x ∈ X } in the Hilbert space L2(Y, F0) of all
square integrable functions. The set { f(x, λ) : x ∈ X } is called total in L2(Y, F0)
if L2(f) = L2(Y, F0).

Theorem 11 (Karhunen, 1947). Assume that

〈v(x),v(y)〉 =
∫
Λ

f(x, λ)f(y, λ) dF (λ) (2.50)

and the set { f(x, λ) : x ∈ X } is total in L2(Λ,F0). Then

v(x) =
∫
Λ

f(x, λ) dZ(λ), (2.51)

where Z is a measure on L with values in the Hilbert space of all V -valued random
vectors w with E[‖w‖2] <∞. Moreover, we have

E[JZ(A) ⊗ Z(B)] = F (A ∩B), A,B ∈ L. (2.52)

The measure Z is called an orthogonal scattered random measure, while the
measure F satisfying (2.52) is called the control measure of the orthogonal
scattered random measure Z.

Is it possible to apply Theorem 11 to Equation 2.48? The answer is negative,
because the function ei(p,B−A) cannot be written in the form f(B, λ)f(A, λ). To
overcome this difficulty, fix an origin O ∈ E, write the vector B − A ∈ V as
B −A = (B −O) − (A−O), and finally obtain

ei(p,B−A) = ei(p,B−O)ei(p,A−O).

By Theorem 11, we obtain

v(A) =
∫
V̂

ei(p,A−O) dZ(p).

To avoid frequent repetitions of the same words, we vectorise the affine space
E by a choice of the origin O ∈ E once and forever, and denote the vector space
EO by Rd.

Let G be a closed subgroup of the group O(d), and let (ρ,W ) be an orthogonal
representation of the group G in a real finite-dimensional vector space.
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Definition 5. A random field T (x) is called (G, ρ)-isotropic if

〈T (gx)〉 = ρ(g)〈T (x)〉,
〈T (gx),T (gy)〉 = (ρ⊗ ρ)(g)〈T (x),T (y)〉, g ∈ G.

(2.53)

A physical motivation of Definition 5 will be given in Section 3.1.

2.10 Special Functions

The Gamma function is

Γ (z) :=
∫ ∞

0

tz−1e−t dt, Re z > 0.

The Gamma function satisfies the recurrence relation

Γ (z + 1) = zΓ (z). (2.54)

The Lebesgue measure of the sphere od radius r in a d-dimensional space is

|Sd−1(r)| =
2πd/2

Γ (d/2)
rd−1.

The associated Legendre polynomials are

Pm� (x) :=
(−1)m

2��!
(1 − x2)m/2

d�+m

dx�+m
(x2 − 1)�, −� ≤ m ≤ �.

The factor (−1)m is called the Condon–Shortley phase. We have

P−m
� (x) = (−1)m

(�−m)!
(�+m)!

Pm� (x), m ≥ 1.

The Wigner D functions D�
m0(ϕ, θ) have the form:

D�
m0(ϕ, θ) =

√
(�−m)!
(�+m)!

e−imϕPm� (cos θ).

In terms of the associated Legendre polynomials, Equation 2.35 takes the form:

Ω�−1,0,0(θ) = P 0
� (cos θ),

Ω�−1,m,0(θ) = (−1)m
√

2(�−m)!
(�+m)!

Pm� (cos θ),

Define the real-valued spherical harmonics Sm� by a formula similar to (2.31):

Sm� (θ, ϕ) :=

√
2�+ 1

4π
T �m0(ϕ, θ). (2.55)

The real-valued spherical harmonics are orthogonal:∫
S2
Sm1
�1

(θ, ϕ)Sm2
�2

(θ, ϕ) dS = δ�1�2δm1m2 .
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The Gegenbauer polynomials Cαn (x) are defined by

Cαn (x) :=

⎧⎪⎪⎨⎪⎪⎩
1

Γ (α)

∑[n/2]
m=0(−1)mΓ (α+n−m)

m!(n−2m)! (2x)
n−2m, α > −1/2, α �= 0,∑[n/2]

m=0(−1)m (n−m−1)!
m!(n−2m)! , α = 0, n �= 0,

1, α = n = 0.

Similarly, one can define complex-valued spherical harmonics Y m� ; see Erdélyi,
Magnus, Oberhettinger & Tricomi (1981). The domain of the function Y m� is the
(d − 1)-dimensional sphere Sd−1; the number of spherical harmonics of degree
� is

h(d, �) =
(2�+ d− 2)(d+ �− 3)!

(d− 2)!�!
.

Let m0, m1, . . . , md−2 be integers satisfying the condition

� = m0 ≥ m1 ≥ · · · ≥ md−2 ≥ 0 .

Let t = (t1, t2, . . . , td) be a point in the space Rd. Let

rk :=
√
t2k+1 + t2k+2 + · · · + t2d ,

where k = 0, 1, . . . , d− 2. Consider the functions

H(mk,±, t) :=
(
td−1 + itd
rd−2

)±md−2

r
md−2
d−2

d−3∏
k=0

r
mk−mk+1
k

× C
mk+1+(N−k−2)/2
mk−mk+1

(
tk+1

rk

)
,

and denote

Y (mk,±, t) := r−m0 H(mk,±, t).

The functions Y (mk,±, t) are orthogonal in the Hilbert space L2(Sd−1) of the
square-integrable functions on the unit sphere Sd−1, and the square of the length
of the vector Y (mk,±, t) is

L(mk) = 2π
d−2∏
k=1

π2k−2mk−d+2Γ (mk−1 +mk + d− 1 − k)
(mk−1 + d−1−k

2 (mk−1 −mk)![Γ (mk + d−1−k
2 )]2

.

The functions Y (mk,±, t)/
√
L(mk) are complex-valued spherical harmonics.

Let m = m(mk,±) be the number of the symbol (m0,m1, . . . ,mN−2,±) in
the lexicographic ordering. The real-valued spherical harmonics, Sm� (t), can be
defined as

Sm� (t) :=

⎧⎪⎪⎨⎪⎪⎩
Y (mk,+, t)/

√
L(mk) md−2 = 0,

√
2 ReY (mk,+, t)/

√
L(mk) , md−2 > 0,m = m(mk,+),

−
√

2 ImY (mk,−, t)/
√
L(mk) , md−2 > 0,m = m(mk,−).
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These harmonics are orthonormal:∫
Sd−1

Sm1
�1

(t)Sm2
�2

(t) dS = δm1m2δn1n2 . (2.56)

It follows that

S0
0(t) =

√
Γ (d/2)
2πd/2

. (2.57)

The addition theorem for spherical harmonics, see e.g. Erdélyi et al. (1981,
Chap. XI, Sect. 4, Theorem 4) reads

C
(d−2)/2
m (cos θ)

C
(d−2)/2
m (1)

=
2πd/2

Γ (d/2)h(d, �)

h(d,�)∑
m=1

Sm�

(
x

‖x‖

)
Sm�

(
y

‖y‖

)
, (2.58)

where θ is the angle between the vectors x and y.
The Bessel function of the first kind of order ν is defined as

Jν(z) = (z/2)ν
∞∑
m=0

(−1)m

22mm!Γ (ν +m+ 1)
z2m.

The spherical Bessel function is

jν(z) =
√
π/(2z)Jν+1/2(z).

The spherical Bessel functions have the following property:

j1(x)
x

=
1
3
(j0(x) + j2(x)) (2.59)

The plane wave, ei(p,x), has the following expansion:

ei(p,x) = Γ (
d− 2

2
)2

d−2
2

∞∑
�=0

i�(�+
d− 2

2
)
J�+ d−2

2
(‖p‖ · ‖x‖)

(‖p‖ · ‖x‖) d−2
2

C
d−2
2

� (cos θ),

where θ is the angle between the vectors p and x. Combining this expansion
with (2.58) and taking into account (2.54) and the value

C
(d−2)/2
� (1) =

(�+ d− 3)!
�!(d− 3)!

,

we obtain the expansion of the plane wave in spherical harmonics:

ei(p,x) = (2π)d/2
∞∑
�=0

i�(�+ (d− 2)/2)
J�+(d−2)/2(‖p‖ · ‖x‖)

(‖p‖ · ‖x‖)(d−2)/2

×
h(d,�)∑
m=1

Sm�

(
p

‖p‖

)
Sm�

(
x

‖x‖

)
.

(2.60)

In particular, for d = 2 we obtain the Jacobi–Anger expansion

ei(p,x) =
∞∑

�=−∞
i�J�(‖p‖ · ‖x‖)ei�(ϕp−ϕx), (2.61)
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where ϕp (resp. ϕx) is the polar angle of the vector p (resp. x). For d = 3 we
have the (real version of) Rayleigh expansion:

ei(p,x) = 4π
∞∑
�=0

�∑
m=−�

i�j�(‖p‖ · ‖x‖)Sm� (θp, ϕp)Sm� (θx, ϕx). (2.62)

2.11 Bibliographical Remarks

Two terms, vector space and linear space, are widely used in the literature. The
former stresses that the space consists of vectors, while the latter stresses that
one can perform linear operations in the space. We prefer the latter term just
because most of our spaces consist of tensors rather than vectors.

A preliminary definition of a natural isomorphism is as follows: it is an iso-
morphism that does not depend on any arbitrary choices (such as the choice
of a basis). A precise definition can be given using the language of categories;
see, for example, Riehl (2016, Definition 1.4.1). Eilenberg & MacLane (1945)
were the first who proved the non-existence of a natural isomorphism between a
finite-dimensional space and its dual.

There exist several equivalent definitions of a tensor. We approve Definition 1
and Definition 2, which are situated somewhere between the most beautiful and
abstract definition through the universal mapping property due to Bourbaki
(1998) (Theorem 1), and classical coordinate-dependent Definition 3.

Note that we use physical convention: a Hermitian form is linear in its second
argument.

Equation (2.6) is the coordinate-free definition of the trace due to Bourbaki
(1998).

For standard references in general topology, we mention monographs by
Engelking (1989), Kelley (1975), Kuratowski (1966) and Kuratowski (1968), and
textbooks by Conway (2014), Dixmier (1984) and Nagata (1985).

Permutation groups are considered in textbooks by Biggs & White (1979),
Cameron (1999), Dixon & Mortimer (1996) and Passman (2012).

The family of classical groups has been defined by Hermann Weyl in 1939
in the first edition of Weyl (1997). See also modern treatment in Goodman &
Wallach (2009).

Many books are devoted to group actions. We mention three classical books
by Bredon (1972), Montgomery & Zippin (1974) and Pontryagin (1966).

There exists an advanced theory of orbifolds based on a sophisticated
axiomatic definition; see Boileau, Maillot & Porti (2003).

For the history of representation theory, see Curtis (1999). Good introductory
books are Adams (1969), Goodman & Wallach (2009), Fulton & Harris (1991),
Murnaghan (1963), Procesi (2007) and Rossmann (2002). In our exposition, we
followed mostly Bröcker & tom Dieck (1995). We also mention a classical book
by Weyl (1997).
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The Haar measure exists on all locally compact Hausdorff topological groups.
It is unique up to a positive multiplicative constant. Its existence was proved by
Haar (1933).

The Peter–Weyl theorem has been proved by Peter & Weyl (1927). Material
about group actions is taken from Duistermaat & Kolk (2000).

The Clebsch–Gordan coefficients were introduced by Clebsch (1872) and Gor-
dan (1875). The history of their calculation for the case of unitary representations
of the group SU(2) can be found in Biedenharn & Louck (1981). Numerous
formulae are collected in Varshalovich et al. (1988).

The choice of the phase in (2.31) is due to Condon & Shortley (1935).
The Gaunt integral has been calculated by Gaunt (1929).
An introduction to invariant theory may be found in Spencer (1971), Smith

(1994) and Deville & Gatski (2012).
The symmetric covariant tensors and reduction equations were found by the

authors using the MATLAB Symbolic Math Toolbox.
The Minkowski theorem was proved by Minkowski (1897), while the

Carathéodory theorem was proved in Carathéodory (1907). See also a classi-
cal review paper by Danzer et al. (1963). Krein & Milman (1940) proved an
infinite-dimensional version of the Minkowski theorem, while Choquet (1956)
and Bishop & de Leeuw (1959) proved that of the Carathéodory theorem.

Random fields appeared in applied physical papers by Friedmann & Keller
(1924), von Kármán & Howarth (1938), Obukhov (1941a) and Obukhov (1941b),
among others.

The first examples of special functions appeared in the early eighteenth cen-
tury as solutions to differential equations of mathematical physics and results
of integration. We use notation by Abramowitz & Stegun (1964), except for
notation for real-valued spherical harmonics taken from Erdélyi et al. (1981).

The Rayleigh expansion was in fact proved by Bauer (1859), and the gen-
eral expansion (2.60) by Gegenbauer (1873), Gegenbauer (1877a), Gegenbauer
(1877b).
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Mathematical Results

We start from the exact formulation of the problem: what we mean by a homo-
geneous and isotropic tensor-valued random field and its correlation tensors, and
how to describe the field in terms of more simple objects. We illustrate our meth-
ods by considering a simple but non-trivial example when the field is defined on
the plane and has rank 1. After that, we prove a general result for fields of arbi-
trary rank. To check that our methods work correctly, we use them to prove
again the results of our predecessors. It turns out that the list of these results
is impressively short. Finally, we use the general result and solve the above-
formulated problem for physically interesting fields of ranks up to 4. Even more
results and proofs may be found on this book’s website.

3.1 The Problem

In order to motivate introducing of isotropic tensor-valued random fields,
consider the following models.

Let τ(x) be the temperature at the point x in the space domain V . Assume
that τ(x) is a second-order mean-square continuous random field. If one shifts
the origin of a coordinate system, the scalar τ(x) does not change value. It follows
that the random field τ(x) is homogeneous.

Moreover, the scalar τ(x) does not change value under rotations and reflections
of the coordinate system. It follows that

〈τ(gx)〉 = 〈τ(x)〉,
〈τ(gx), τ(gy)〉 = 〈τ(x), τ(y)〉, g ∈ O(V ).

This is a particular case of Definition 5 when G = O(V ) and ρ is the trivial
representation of G in a real one-dimensional space W .

Let v(x) be the velocity of a turbulent fluid at the point x in the space domain
V . Assume that v(x) is a second-order mean-square continuous random field. It
is then homogeneous by the same reasons as in the previous model.
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Apply an arbitrary orthogonal transformation g ∈ O(V ) to the vector field
v(x). After the transformation g the point x becomes the point gx. Evidently
the vector v(x) is transformed into gv(x). The one-point correlation functions
of both fields must be equal:

〈v(gx)〉 = 〈gv(x)〉 = g〈v(x)〉.

By homogeneity, 〈v(gx)〉 = 〈v(x)〉, and we obtain

〈v(gx)〉 = g〈v(x)〉.

The two-point correlation functions of both fields are equal as well:

〈v(gx),v(gy)〉 = 〈gv(x), gv(y)〉 = (g ⊗ g)〈v(x),v(y)〉.

It follows that the random field v(x) is homogeneous and isotropic with respect
to the group G = O(V ) and its defining representation.

Identify the space V with the space Rd by introducing the Cartesian coor-
dinates. The action of the group O(d) in the space Rd by the matrix-vector
multiplication has the quotient Rd/O(d) = [0,∞). The orbit type stratification
is [0,∞) = {0}∪(0,∞). The conjugacy class of the stratum {0} is [O(d)], and the
corresponding fixed point set is {0}. The conjugacy class of the stratum (0,∞)
is [O(d− 1)], and the corresponding fixed point set is R1, the linear span of the
y-axis when d = 2 and the linear span of the z-axis when d = 3.

Let E(x) be the strain tensor of a deformable body. Assume that E(x) is a
second-order mean-square continuous random field taking values in the space
S2(V ) of symmetric rank 2 tensors over V . Similar considerations prove that the
field E(x) is homogeneous and isotropic with respect to the group G = O(V )
and its orthogonal representation ρ(g) = S2(g).

The orbit types of the above action for the case of d = 3 are described in
Golubitsky et al. (1988). The group O(3) acts in the space S2(R3) by g · A =
gAg−1, g ∈ O(3), A ∈ R3. Under this action, the matrix A can be diagonalised.
If A has three distinct eigenvalues, then the corresponding conjugacy class is
[G0] = [D2 × Zc2]. If two of the eigenvalues are equal, then the conjugacy class
is [G1] = [O(2) × Zc2]. Finally, when all three eigenvalues are equal, then the
conjugacy class is [G2] = [O(3)].

Let VGi be the corresponding fixed point set. For any group G lying between
Gi and NO(3)(Gi), the space VGi is an invariant subspace of the representation
S2(g) of the group G. Denote by ρ(g) the restriction of the representation S2(g)
to the space VG. When G = Gi, the representation ρ is trivial, otherwise it is not
trivial. One may consider a homogeneous VGi -valued random field E(x) which
is (G, ρ)-isotropic.

Let e(x) be the piezoelectricity tensor (recall Subsection 1.5.3). Assume that
e(x) is a second-order mean-square continuous random field taking values in the
space S2(V ) ⊗ V of rank 3 tensors over V symmetric in the first two indices.
Similar considerations prove that the field E(x) is homogeneous and isotropic
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with respect to the group G = O(E) and its orthogonal representation ρ(g) =
S2(g) ⊗ g.

The orbit types of the above action for the case of d = 3 are described in
Geymonat & Weller (2002). There are 15 orbit types; we will discuss them in
Section 3.7. For each class [Gi], we may consider a group G lying between Gi and
NO(3)(Gi), and the restriction ρ of the representation S2(g) ⊗ g of the group G

to the invariant subspace VGi . We consider a homogeneous and (G, ρ)-isotropic
random field.

Finally, let C(x) be the elasticity tensor of a deformable body. Assume that
C(x) is a second-order mean-square continuous random field taking values in the
space S2(S2(V )) of symmetric rank 2 tensors over S2(V ). Similar considerations
prove that the field C(x) is homogeneous and isotropic with respect to the group
G = O(E) and its orthogonal representation ρ(g) = S2(S2(g)).

The orbit types of the above action for the case of d = 3 are described in
Forte & Vianello (1996). There are eight orbit types; we will discuss them in
Section 3.8. Again, it is interesting to obtain a description of a homogeneous and
(G, ρ)-isotropic random field.

We arrive at the following general formulation. Let V be a real finite-
dimensional space of dimension d. We will be interested in the cases of d = 2 and
d = 3. The former case is closely connected with plane problems of continuum
physics, while the latter case is connected with its space problems. Let x1, . . . ,
xd be the Cartesian coordinates in V , let

(x,y) = x1y1 + · · · + xdyd

be the standard inner product in V = Rd, and let O(d) be the orthogonal group
of the space Rd.

Let G be a closed subgroup of the group O(d), and let ρ be an orthogonal
representation of the group G in a real finite-dimensional space V. In physi-
cally interesting cases, V is a subspace of the tensor power (Rd)⊗r. We would
like to find the general form of the one- and two-point correlation tensors of a
homogeneous and (G, ρ)-isotropic random field as well as its spectral expansion.

3.2 An Example

Before proving general theorems, consider a simple but non-trivial example that
demonstrates our methods.

Example 23. Consider a mean-square continuous homogeneous random field
v(x) : R2 → R2. Assume it is (O(2), ρ1)-isotropic; that is, for any g ∈ O(2), we
have

〈v(gx)〉 = g〈v(x)〉,
〈v(gx),v(gy)〉 = (g ⊗ g)〈v(x),v(y)〉.

(3.1)
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We have 〈v(gx)〉 = 〈v(x)〉, because the one-point correlation tensor of a
homogeneous random field is constant. Then we obtain 〈v(x)〉 = g〈v(x)〉 for
all g ∈ O(2). The only vector which is not changing under rotations is 0. It
follows that 〈v(x)〉 = 0.

By Theorem 10, the two-point correlation tensor of a homogeneous C2-valued
random field has the form

〈v(x),v(y)〉 =
∫

R̂2
ei(p,y−x)dF (p), (3.2)

where F (p) is a measure on the wavenumber domain R̂2 taking values in the
set of Hermitian non-negative-definite matrices on C2. If the field takes values
in R2, then

F (−A) = F�(A), A ∈ B(R̂2), (3.3)

where −A = {−p : p ∈ A }. Note that the set H of all Hermitian matrices on
C2 is a four-dimensional real linear space.

Consider the group Z2 = {I,−I}, where I is the 2× 2 identity matrix, and its
orthogonal representation ρ acting in H by

ρ(I)F = F, ρ(−I)F = F�, F ∈ H.

Then Equation (3.3) is equivalent to

F (gA) = ρ(g)F (A), g ∈ Z2.

On the other hand, it is easy to prove (see details in Section 3.3) that the
second equation in (3.1) is equivalent to the following condition:

F (gA) = (g ⊗ g)F (A), g ∈ O(2). (3.4)

The two last display formulae are compatible if and only if ρ(g) and g ⊗ g are
the same representations of the group Z2. The transposition does not change the
2 × 2 symmetric part of a Hermitian matrix F , and multiplies by −1 its skew-
symmetric part. In other words, the representation ρ(g) is the direct sum 3A⊕B
of three copies of the trivial representation A(±I) = 1 of the group Z2 acting in
the three-dimensional linear space S2(R2) of symmetric 2 × 2 matrices, and one
copy of its non-trivial representation B(±I) = ±1 acting in the one-dimensional
space Λ2(R2) of skew-symmetric 2 × 2 matrices.

On the other hand, the representation g of the group Z2 is 2B, the direct sum
of two copies of B. Its tensor square is 4A �= 3A⊕B. However, the restrictions of
both representations to the space S2(R2) are equal. It follows that the measure
F in fact takes values in the space S2(R2). Condition (3.4) takes the form

F (gA) = S2(g)F (A), g ∈ O(2). (3.5)

The next step is to write Equation (3.2) in the form

〈v(x),v(y)〉 =
∫

R̂2
ei(p,y−x)f(p)dμ(p),
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where μ(A) = trF (A), and where f(p) is a measurable function on R̂2 taking
values in the set of symmetric non-negative-definite 2 × 2 matrices with unit
trace. It is easy to see that condition (3.5) is equivalent to the following two
conditions:

f(gp) = S2(g)f(p), μ(gA) = μ(A), g ∈ O(2). (3.6)

Let (λ, ϕp) be the polar coordinates in the wavenumber domain. A measure μ is
O(2)-invariant if and only if it has the form

dμ =
1
2π
dϕp dΦ(λ),

where Φ is a finite measure on [0,∞). The two-point correlation tensor of the
field takes the form

〈v(x),v(y)〉 =
1
2π

∫ ∞

0

∫ 2π

0

ei(p,y−x)f(p)dϕp dΦ(λ).

Consider a point (λ, 0) ∈ R̂2 with λ > 0. The stationary subgroup of this point
is the group O(1) that contains two elements:

E =
(

1 0
0 1

)
, i =

(
1 0
0 −1

)
.

The representation S2(g) of the group O(2) is the direct sum of two irreducible
components. The first component is the trivial representation ρ+ and acts in the
one-dimensional space generated by the matrix

T 0 =
1√
2
I.

The second component is the representation ρ2 (see Example 14). It acts in the
two-dimensional space of symmetric traceless 2 × 2 matrices (deviators). The
restriction of this representation to the subgroup O(1) is as follows:

E �→ I, i �→ i,

that is, the direct sum Ag ⊕ Au of the trivial representation, Ag, and the non-
trivial, Au. The matrix

T 2,+ =
1√
2

(
−1 0
0 1

)
generates the space when the component Ag acts, indeed, iT 2,+i−1 = T 2,+. The
matrix

T 2,− =
1√
2

(
0 1
−1 0

)
generates the space when the component Au acts, indeed, iT 2,−i−1 = −T 2,−.
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The matrix f(λ, 0) satisfies the condition

f(g(λ, 0)) = S2(g)f(λ, 0), g ∈ O(2).

In particular, f(i(λ, 0)) = S2(i)f(λ, 0). But we have i(λ, 0) = (λ, 0), then
f(λ, 0) = S2(i)f(λ, 0). That is, the matrix f(λ, 0) lies in the space where the
trivial representation of the group O(2) acts. We have seen that this space is
generated by the matrices T 0 and T 2,+. In other words,

f(λ, 0) = c1(λ)T 0 + c2(λ)T 2,+ =
1√
2

(
c1(λ) − c2(λ) 0

0 c1(λ) + c2(λ)

)
.

This matrix is non-negative-definite and has unit trace if and only if c1(λ) = 1√
2

and − 1√
2
≤ c2(λ) ≤ 1√

2
. Geometrically, the values of the function f(λ, 0) for

λ > 0 lie in the convex compact set C0, the interval with extreme points

A1 =
(

1 0
0 0

)
, A2 =

(
0 0
0 1

)
.

Any point f(λ, 0) inside C0 can be uniquely represented by its barycentric
coordinates

f(λ, 0) = u1(λ)A1 + u2(λ)A2 =
(
u1(λ) 0

0 u2(λ)

)
with u1(λ) ≥ 0, u2(λ) ≥ 0 and u1(λ) + u2(λ) = 1.

When λ = 0, the stationary subgroup is all of O(2), and the matrix f(0, 0) lies
in the one-dimensional space when the trivial component of the representation
S2(g) of the group O(2) acts. This space is generated by T 0. Moreover, the only
non-negative-definite matrix with unit trace in this space is T 0 itself. That is,
f(0, 0) takes values in the convex compact set C1 = {T 0} ⊂ C0. For this point,
we have

u1(0) = u2(0) =
1
2
. (3.7)

The matrix

g =
(

cos(ϕp) − sin(ϕp)
sin(ϕp) cos(ϕp)

)
maps the vector with polar coordinates (λ, 0) to that with polar coordinates
(λ, ϕp). By the first condition in (3.6), we have

f(λ, ϕp) = gf(λ, 0)g−1

= u1(λ)
(

cos2(ϕp) sin(ϕp) cos(ϕp)
sin(ϕp) cos(ϕp) sin2(ϕp)

)
+ u2(λ)

(
sin2(ϕp) − sin(ϕp) cos(ϕp)

− sin(ϕp) cos(ϕp) cos2(ϕp)

)
=

1
4
u1(λ)A1(ϕp) +

1
4
u2(λ)A2(ϕp),
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where

A1(ϕp) =
(

2e0iϕp + e2iϕp + e−2iϕp i−1(e2iϕp − e−2iϕp)
i−1(e2iϕp − e−2iϕp) 2e0iϕp − e2iϕp − e−2iϕp

)
,

A2(ϕp) =
(

2e0iϕp − e2iϕp − e−2iϕp i−1(e−2iϕp − e2iϕp)
i−1(e−2iϕp − e2iϕp) 2e0iϕp + e2iϕp + e−2iϕp

)
.

Introduce the notation dΦi(λ) = ui(λ) dΦ(λ), i = 1, 2. The two-point
correlation tensor of the field takes the form

〈v(x),v(y)〉 =
1
8π

∫ ∞

0

∫ 2π

0

ei(p,y−x)A1(ϕp) dϕp dΦ1(λ)

+
1
8π

∫ ∞

0

∫ 2π

0

ei(p,y−x)A2(ϕp) dϕp dΦ2(λ).
(3.8)

It follows from (3.7) that

Φ1({0}) = Φ2({0}).

To calculate the inner integral, we use the Jacobi–Anger expansion (2.61). We
obtain

〈v(x),v(y)〉 =
1
2

∫ ∞

0

B1(λ, ‖z‖, ϕz) dΦ1(λ)

+
1
2

∫ ∞

0

B2(λ, ‖z‖, ϕz) dΦ2(λ),

where z = y − x and where

B1
11(λ, ‖z‖, ϕz) = B2

22(λ, ‖z‖, ϕz) = J0(λ‖z‖) − J2(λ‖z‖) cos(2ϕz),

B1
12(λ, ‖z‖, ϕz) = B1

21(λ, ‖z‖, ϕz) = −J2(λ‖z‖) sin(2ϕz),

B1
22(λ, ‖z‖, ϕz) = B2

11(λ, ‖z‖, ϕz) = J0(λ‖z‖) + J2(λ‖z‖) cos(2ϕz),

B2
12(λ, ‖z‖, ϕz) = B2

21(λ, ‖z‖, ϕz) = J2(λ‖z‖) sin(2ϕz).

Note that

cos(2ϕz) = 2 cos2(ϕz) − 1 = 2
z2
1

‖z‖2
− 1,

cos(2ϕz) = 1 − 2 sin2(ϕz) = 1 − 2
z2
2

‖z‖2
,

sin(2ϕz) = 2 cos(ϕz) sin(ϕz) = 2
z1z2
‖z‖2

.

The two-point correlation tensor takes the form

〈v(x),v(y)〉ij =
1
2

∫ ∞

0

[
J0(λ‖z‖)δij + J2(λ‖z‖)

(
δij − 2

zizj
‖z‖2

)]
dΦ1(λ)

+
1
2

∫ ∞

0

[
J0(λ‖z‖)δij + J2(λ‖z‖)

(
2
zizj
‖z‖2

− δij

)]
dΦ2(λ),

which coincides with the known result by Yaglom (1957).



3.2 An Example 115

To find the spectral expansion of the field, use the Jacobi–Anger expansion
twice:

ei(p,y) =
∞∑

�=−∞
i�J�(‖p‖ · ‖y‖)ei�(ϕp−ϕy),

e−i(p,x) =
∞∑

�′=−∞
i−�

′
J�′(‖p‖ · ‖x‖)ei�′(−ϕp+ϕx),

where ϕx (resp. ϕy) is the polar angle of the point x (resp. y). We obtain

〈v(x),v(y)〉ij =
1
2

∞∑
�,�′=−∞

∫ ∞

0

J�(λ‖y‖)J�′(λ‖x‖) dΦ1(λ)C��
′1

ij ei(�′ϕx−�ϕy)

+
1
2

∞∑
�,�′=−∞

∫ ∞

0

J�(λ‖y‖)J�′(λ‖x‖) dΦ2(λ)C��
′2

ij ei(�′ϕx−�ϕy),

(3.9)
where

C��
′1

11 = C��
′2

22 = δ��′ −
1
2
δ�+2 �′ −

1
2
δ�−2 �′ ,

C��
′1

12 = C��
′1

21 =
1
2i

(δ�−2 �′ − δ�+2 �′),

C��
′1

22 = C��
′2

11 = δ��′ +
1
2
δ�+2 �′ +

1
2
δ�−2 �′ ,

C��
′2

12 = C��
′2

21 =
1
2i

(δ�+2 �′ − δ�−2 �′).

Now we group terms as follows. The first group corresponds to � = �′ = 0. For
the kth term in the right-hand side of (3.9), its contribution is

1
2

∫ ∞

0

J0(λ‖y‖)J0(λ‖x‖) dΦk(λ)D′k0(ϕx)D′k0(ϕy),

where D′k0(ϕx) is the 2×2 identity matrix. The next group contains four terms.
The total contribution of the terms with (�, �′) = (±1,∓1) is

1
2

∫ ∞

0

J1(λ‖y‖)J1(λ‖x‖) dΦk(λ)Ek1,1(ϕx, ϕy),

where

Ek1,1(ϕx, ϕy) = (−1)k
(
− cos(ϕx + ϕy) sin(ϕx + ϕy)
sin(ϕx + ϕy) cos(ϕx + ϕy)

)
.

Here we used the identity J−�(t) = (−1)�J�(t). The total contribution of the
terms with (�, �′) = (±1,±1) is

1
2

∫ ∞

0

J1(λ‖y‖)J1(λ‖x‖) dΦk(λ)Ek1,2(ϕx, ϕy),
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where

Ek1,2(ϕx, ϕy) = 2
(

cos(ϕx − ϕy) 0
0 cos(ϕx − ϕy)

)
.

It is easy to check that

Ek1,1(ϕx, ϕy) + Ek1,2(ϕx, ϕy) = Dk1,1(ϕx)Dk1,1(ϕy)

+Dk1,2(ϕx)Dk1,2(ϕy),

where

Dk1,1(ϕx) =
(

cos(ϕx) (−1)k+1 sin(ϕx)
(−1)k+1 sin(ϕx) cos(ϕx)

)
and

D11,2(ϕx) =
√

2
(

cos(ϕx) 0
0 sin(ϕx)

)
,

D21,2(ϕx) =
√

2
(

sin(ϕx) 0
0 cos(ϕx)

)
.

Then, the total contribution of all four terms becomes

1
2

∫ ∞

0

J1(λ‖y‖)J1(λ‖x‖) dΦk(λ)Dk1,1(ϕx)Dk1,1(ϕy)

+
1
2

∫ ∞

0

J1(λ‖y‖)J1(λ‖x‖) dΦk(λ)Dk1,2(ϕx)Dk1,2(ϕy).

For any � ≥ 2, the total contribution of the terms (�− 2, �) and (−�+ 2,−�) is

1
2

∫ ∞

0

J�−2(λ‖y‖)J�(λ‖x‖) dΦk(λ)Ek�,1(ϕx, ϕy), (3.10)

where

Ek�,1(ϕx, ϕy) = (−1)k
(

cos[�ϕx − (�− 2)ϕy] sin[�ϕx − (�− 2)ϕy]
sin[�ϕx − (�− 2)ϕy] − cos[�ϕx − (�− 2)ϕy]

)
.

The total contribution of the terms (�, �− 2) and (−�,−�+ 2) is

1
2

∫ ∞

0

J�(λ‖y‖)J�−2(λ‖x‖) dΦk(λ)Ek�,2(ϕx, ϕy), (3.11)

where

Ek�,2(ϕx, ϕy)

= (−1)k ×
(

cos[(�− 2)ϕx − �ϕy] − sin[(�− 2)ϕx − �ϕy]
− sin[(�− 2)ϕx − �ϕy] − cos[(�− 2)ϕx − �ϕy]

)
,

Finally, the total contribution of the terms (�, �) and (−�,−�) is

1
2

∫ ∞

0

J�(λ‖y‖)J�(λ‖x‖) dΦk(λ)[Dk�,1(ϕx)Dk�,1(ϕy)

+Dk�,2(ϕx)Dk�,2(ϕy)],
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where

Dkl,1(ϕx) =
√

2 cos(�ϕx)I, Dkl,2(ϕx) =
√

2 sin(�ϕx)I.

Combining everything together, we obtain

〈v(x),v(y)〉 =
1
2

2∑
k,m=1

∞∑
�=0

∫ ∞

0

J�(λ‖y‖)J�(λ‖x‖) dΦk(λ) (3.12)

×Dk�,m(ϕy)Dk�,m(ϕx)

+
1
2

2∑
k,m=1

∞∑
�=2

∫ ∞

0

J�−2(λ‖y‖)J�(λ‖x‖) dΦk(λ)Ek�,1(ϕx, ϕy)

+
1
2

2∑
k,m=1

∞∑
�=2

∫ ∞

0

J�(λ‖y‖)J�−2(λ‖x‖) dΦk(λ)Ek�,2(ϕx, ϕy),

where Dk0,m(ϕ) = 1√
2
I. Apply Karhunen’s theorem. Introduce the set

{Zk�,mi (λ) : � ≥ 0, 1 ≤ i, k,m ≤ 2 }

of centred real-valued random measures on the set [0,∞) with control measures
Φk. Write down the field in the following form

vi(ρ, ϕ) =
1√
2

2∑
j,k,m=1

∞∑
�=0

∫ ∞

0

J�(λρ)D
k�,m
ij (ϕ) dZk�,mj (λ), (3.13)

where (ρ, ϕ) are the polar coordinates of a point x ∈ R2. If all the introduced
measures were uncorrelated, we would take into account the contribution of all
terms but (3.10) and (3.11). To take into account the missing contribution, we
need to introduce a non-zero correlation between the measures Zk�−2,m

i (λ) and
Zk�,mj (λ) for � ≥ 2 as follows.

E[Zk �−2,m(A)(Zk�,n(B))�] = Φk(A ∩B)[Dk �−2,m(ϕy)]−1

× Ek�,δmn+1(ϕx, ϕy)[Dk�,n(ϕx)]−1,

where Zk�,m(A) = (Zk�,m1 (A), Zk�,m2 )�.

Theorem 12. The one-point correlation tensor of a homogeneous and
(O(2), ρ1)-isotropic random field is 0. Its two-point correlation tensor is given by
(3.12). The spectral expansion of the field is given by (3.13).

3.3 A General Result

To find the one-point correlation tensor 〈T (x)〉 of a homogeneous and (G, ρ)-
isotropic random field T (x), generalise the arguments given in Example 23.
Recall the first equation in (2.53):

〈T (gx)〉 = ρ(g)〈T (x)〉, g ∈ G.



118 Mathematical Results

It follows that the tensor 〈T (x)〉 lies in the isotypic subspace of V that
corresponds to the trivial representations of G. There can be two cases.

● Case 1. The multiplicity of the trivial representation of the group G in ρ is
equal to 0. Then we have 〈T (x)〉 = 0.

● Case 2. The above multiplicity is positive, say m′
0 > 0. Then we have

〈T (x)〉 =
m′

0∑
i=1

CiT
i, Ci ∈ R, (3.14)

where T i is a basis tensor of the one-dimensional subspace of the space V,
where the ith copy of the trivial representation lives.

If m′
0 > 1, then the choice of the basis tensors T i is not unique.

To find the two-point correlation tensor 〈T (x),T (y)〉, use the idea of Exam-
ple 23. Let T (x) be a homogeneous and isotropic random field on a real linear
space V taking values in a real linear space V. Consider the set C of com-
plex numbers as a two-dimensional real space, and denote VC := C ⊗R V (the
index R shows that both spaces are real). Under the scalar-vector multiplication
α(β ⊗R x) := (αβ) ⊗R x, α, β ∈ C, x ∈ V, VC becomes a complex linear space.
The map J(β ⊗R x) := β ⊗R x is a real structure on VC. The set of eigenvectors
of J with eigenvalue 1 is R1 ⊗V, which is V. Therefore, we can consider the field
T (x) as a homogeneous random field taking values in the complex linear space
VC. By Theorem 10, the two-point correlation tensor of the field T (x) has the
form

〈T (x),T (y)〉 =
∫
V̂

ei(p,y−x) dF (p). (3.15)

Among all two-point correlation tensors of the above form, we have to find cor-
relation tensors of all fields taking values in V and satisfying the second equation
in (2.53):

〈T (gx),T (gy)〉 = (ρ⊗ ρ)(g)〈T (x),T (y)〉, g ∈ G.

Calculate the expression 〈T (gx),T (gy)〉 by two different ways. On the one
hand, by the second equation in (2.53) we have:

〈T (gx),T (gy)〉 = (ρ⊗ ρ)(g)〈T (x),T (y)〉

= (ρ⊗ ρ)(g)
∫
V̂

ei(p,y−x) dF (p)

=
∫
V̂

ei(p,y−x) d(ρ⊗ ρ)(g)F (p).
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On the other hand, by (3.15),

〈T (gx),T (gy)〉 =
∫
V̂

ei(p,gy−gx) dF (p)

=
∫
V̂

ei(g−1p,y−x) dF (p)

=
∫
V̂

ei(q,y−x) dF (gq),

where in the last line we made a change of variable g−1p = q.
The rightmost sides of the two last display formulae must be equal. It follows

that we have to find all finite Radon measures F satisfying

F (gA) = (ρ⊗ ρ)(g)F (A), A ∈ B(V̂ ), g ∈ G. (3.16)

The next idea is as follows. As in Example 23, we would like to write down one
equation equivalent to (3.16) and (2.49). Let Ag be the trivial representation of
the group Zc2, and let Au be its determinant representation. If G is of type III,
then let ρπ be the representation of π(G) given by ρπ(g) = ρ(π−1(g)), and let
Λ̂2(ρπ) be the representation of π(G) given by

Λ̂2(ρπ)(g) =

{
Λ2(ρπ)(g), if g ∈ π(G) ∩G,
−Λ2(ρπ)(g), otherwise.

Lemma 1. There exists a group G̃ and its orthogonal representation ρ̃ in a space
Ṽ such that F (A) takes values in Ṽ and (3.23) and (2.49) are equivalent to the
equation

F (g̃A) = ρ̃(g̃)F (A), A ∈ B(V̂ ), g̃ ∈ G̃. (3.17)

● If G is of class I, then G̃ = G× Zc2, Ṽ = V ⊗ V, and

ρ̃ = S2(ρ)⊗̂ dim S2(ρ)Ag ⊕ Λ2(ρ)⊗̂ dim Λ2(ρ)Au.

● If G is of class II, then G̃ = G, Ṽ = S2(V) and ρ̃ = S2(ρ).
● If G is of class III, then G̃ = π(G) × Zc2, Ṽ = V ⊗ V, and

ρ̃ = S2(ρπ)⊗̂ dim S2(ρπ)Ag ⊕ Λ̂2(ρπ)⊗̂ dim Λ̂2(ρπ)Au.

Proof. Note that (2.49) is equal to the following condition:

F (gA) = (dim S2(ρ)Ag ⊕ dim Λ2(ρ)Au)(g)F (A), g ∈ Zc2. (3.18)

Let G be of class I, and let g̃ = (g1, g2) with g1 ∈ G and g2 ∈ Zc2. Then

F (g̃A) = F (g1(g2(A))) = (ρ⊗ ρ)(g1)F (g2(A))

= (S2(ρ) ⊕ Λ2(ρ))(g1)(dim S2(ρ)Ag ⊕ dim Λ2(ρ)Au)(g)F (A)

= ρ̃(g̃)F (A).

(3.19)



120 Mathematical Results

Let G be of class II. Then G = G′ × Zc2 for a suitable G′ of class I. The
representation ρ has the form ρ1⊗̂ρ2, where ρ1 is a representation of G, and ρ2

is a representation of Zc2. The tensor product ρ⊗ ρ is

ρ⊗ ρ = (ρ1⊗̂ρ2) ⊗ (ρ1⊗̂ρ2) = (ρ1 ⊗ ρ1)⊗̂(ρ2 ⊗ ρ2)

= (ρ1 ⊗ ρ1) ⊗ dim(ρ1 ⊗ ρ1)Ag.
(3.20)

On the one hand, by (3.18), we have

F (−A) = (dim S2(ρ)Ag(−E) ⊕ dim Λ2(ρ)Au(−E))F (A). (3.21)

On the other hand, by (3.20), we obtain

F (−A) = F ((E,−E)A) = (ρ1 ⊗ ρ1)(E)⊗̂ dim(ρ1 ⊗ ρ1)Ag(−E)F (A)

= F (A).

The right-hand sides of the last two displays are equal if and only if F (A) takes
values in S2(V) and satisfies (3.17) with ρ̃ = S2(ρ).

Let G be of class III, and let g ∈ π(G) ∩G. Then ρπ(g) = g and

F (gA) = (ρ⊗ ρ)(g)F (A) = (ρπ ⊗ ρπ)(g)F (A).

If g ∈ G \ π(G), then ρπ(g) = ρ(−g) and

F (gA) = F (−(−gA))

= (dimS2(ρ)Ag(−E) ⊕ dim Λ2(ρ)Au(−E))F (−gA)

= (dimS2(ρ)Ag(−E) ⊕ dim Λ2(ρ)Au(−E))(ρ⊗ ρ)(−g)F (A)

= (dimS2(ρ)Ag(−E) ⊕ dim Λ2(ρ)Au(−E))(ρπ ⊗ ρπ)(g)F (A).

The two last displays may be written as

F (gA) = (S2(ρπ) ⊕ Λ̂2(ρπ))F (A), g ∈ π(G).

We may apply (3.19), because π(G) is of class I. We obtain (3.17).
The converse statement follows from the following facts. The restriction of

the representation ρ̃ to the subgroup G is equivalent to ρ ⊗ ρ for the groups
of classes I and III and to S2(ρ) for the groups of class II. The restriction
of the representation ρ̃ to the subgroup Zc2 is equivalent to dim S2(ρ)Ag ⊕
dim Λ2(ρ)Au.

Now, we prove a theorem that gives a general form of the one- and two-
point correlation tensors of homogeneous and (G, ρ)-isotropic random fields. The
results of the remaining sections of this chapter will be its particular cases.

Introduce the measure μ on the Borel σ-field B(V̂ ) as follows:

μ(A) := trF (A), A ∈ B(V̂ ).
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It is well known (see e.g. Berezans’kĭı, 1968), that the measure F is absolutely
continuous with respect to the measure μ:

F (A) =
∫
A

f(p) dμ(p), (3.22)

and the density, f(p), is a measurable function taking values in the set of all non-
negative-definite Hermitian linear operators on VC with unit trace. Equation 3.17
takes the form∫

g̃A

f(p) dμ(p) = ρ̃(g̃)
∫
A

f(p) dμ(p), A ∈ B(V̂ ), g̃ ∈ G̃

and may be written as∫
A

f(g̃p) dμ(g̃p) =
∫
A

ρ̃(g̃)f(p) dμ(p).

This is true if and only if

μ(g̃A) = μ(A),

f(g̃p) = ρ̃(g̃)f(p).
(3.23)

The description of all Radon measures μ satisfying the first equation is well
known, see e.g. Bourbaki (2004, Chapter VII, § 2, Proposition 4). Let V̂ /G̃ be
the space of orbits G̃ ·p, p ∈ V̂ endowed with is quotient topology, and let dg̃ be
the probabilistic Haar measure on G̃. For any finite Radon measure μ satisfying
(3.23), there exists a unique finite Radon measure Φ on the Borel σ-field B(V̂ /G̃)
such that∫

V̂

ei(p,y−x)f(p) dμ(p) =
∫
V̂ /G̃

∫
G̃·p

ei(g̃p,y−x)f(g̃p) dg̃ dΦ(π̂(p)).

We assume that the the orbit space V̂ /G̃ is homeomorphic to a subset of V̂ and
denote the image of the above homeomorphism by the same symbol, V̂ /G̃.

Assume that the action of G̃ on V̂ by matrix-vector multiplication has M
distinct orbit types. Let H0, . . . , HM−1 be their stabilisers, and let H0 corre-
sponds to the minimal orbit type and HM−1 to the principal orbit type. Let
(V̂ /G̃)m, 0 ≤ m ≤ M − 1, be the elements of the orbit type stratification.
Let λm = (λ1, . . . , λdim(V̂ /G̃)m

)� be a chart of the manifold (V̂ /G̃)m, and let
ϕm = (ϕ1, . . . , ϕdim G̃/Hm

)� be a chart of the orbit G̃/Hm. Assume for simplic-
ity that the domains of both charts are dense in the corresponding manifolds.
Let dϕm be the probabilistic G̃-invariant measure on G̃/Hm. Then we have

〈T (x),T (y)〉 =
M−1∑
m=0

∫
(V̂ /G̃)m

∫
G̃/Hm

ei((λm,ϕm),y−x)

× fm(λm,ϕm) dϕm dΦ(λm).
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Consider an orbit G̃ ·λm. Let (λm,ϕ0
m) be the coordinates of the intersection

of this orbit with the set (V̂ /G̃)m. The stationary subgroup of this point is Hm,
that is,

g̃(λm,ϕ0
m) = (λm,ϕ0

m), g̃ ∈ Hm.

The second equation in (3.23) gives

fm(λm,ϕ0
m) = ρ̃(g̃)fm(λm,ϕ0

m), g̃ ∈ Hm,

that is, the tensor fm(λm,ϕ0
m) belongs to the isotypic subspace Vm of the trivial

representation of the group Hm. Denote by Cm the intersection of the subspace
Vm with the convex compact set of the non-negative-definite operators with
unit trace in V̂. Then fm : (V̂ /G̃)m → Cm is an arbitrary Φ-equivalence class of
measurable functions.

We proved that the rank two correlation tensor 〈T (x),T (y)〉 is completely
determined by a finite Borel measure Φ and Φ-equivalence classes of measurable
functions fm : (V̂ /G̃)m → Cm. We do not miss any rank-two correlation tensors
of V-valued homogeneous and (G, ρ)-isotropic random fields. The fields that are
not V-valued, will be removed later, separately for each particular case. Later we
will see that the structure of the set of extreme points of the sets Cm contains
important information about spectral expansions of the field.

The elements of V are rank r tensors. The operator fm(λm,ϕ0
m) is a rank 2r

tensor. By definition of a tensor, fm(λm,ϕ0
m) is a 2r-linear form on the Cartesian

product V 2r. Let τ be the linear operator acting from V 2r to V ⊗2r by

τ(x1,x2, . . . ,x2r) = x1 ⊗ x2 ⊗ · · · ⊗ x2r.

By the universal mapping property, the exists a linear form on V ⊗2r, call it
f m(λm,ϕ0

m), such that fm(λm,ϕ0
m) = f m(λm,ϕ0

m) ◦ τ :

V 2r

fm(λm,ϕ
0
m) ���

��
��

��
��

τ �� V ⊗2r

fm(λm,ϕ
0
m)

��
R1

For simplicity, we denote the extended form f m(λm,ϕ0
m) by the old symbol,

fm(λm,ϕ0
m).

Let g̃ϕm
be an arbitrary element of G̃ such that g̃ϕm

(ϕ0
m) = ϕm. Two such

elements differ by an element of Hm, and the second equation in (3.23) gives

fm(λm,ϕm) = ρ̃(g̃ϕm
)fm(λm,ϕ0

m).

The two-point correlation tensor of the field takes the form

〈T (x),T (y)〉 =
M−1∑
m=0

∫
(V̂ /G̃)m

∫
G̃/Hm

ei(g̃ϕm (λm,ϕ
0
m),y−x)ρ̃(g̃ϕm

)

× fm(λm,ϕ0
m) dϕm dΦ(λm).

(3.24)
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Choose an orthonormal basis T 1
i1···ir , . . . , T dim V

i1···ir in the space V. The tensor
square V ⊗ V has several orthonormal bases. The coupled basis consists of ten-
sor products T ii1···ir ⊗ T jj1···jr , 1 ≤ i, j ≤ dim V. The mth uncoupled basis is
build as follows. Let ρm,1, . . . , ρm,km be all non-equivalent irreducible orthog-
onal representations of the group G̃ of class 1 with respect to Hm such that
the representation ρ̃ contains isotypic subspaces where cmk ≥ 1 copies of the
representation ρm,k act, and let the restriction of the representation ρm,k to Hm

contains dmk ≥ 1 copies of the trivial representation of Hm. Let Tmklni1···irj1···jr ,
1 ≤ l ≤ dmk, 1 ≤ n ≤ cmk be an orthonormal basis in the space where the nth
copy acts. Complete the above basis to the basis Tmklni1···irj1···jr , 1 ≤ l ≤ dim ρm,k

and call this basis the mth uncoupled basis. The vectors of the coupled basis are
linear combinations of the vectors of the mth uncoupled basis:

T ii1···ir ⊗ T jj1···jr =
km∑
k=1

dim ρm,k∑
l=1

cmk∑
n=1

cmklnij Tmklni1···irj1···jr + · · · ,

where dots denote the non-important terms.
In the introduced coordinates, Equation (3.24) takes the form

〈T (x),T (y)〉ij =
M−1∑
m=0

km∑
k=1

dim ρm,k∑
l=1

dmk∑
l′=1

cmk∑
n=1

cmklnij

∫
(V̂ /G̃)m

∫
G̃/Hm

ei(g̃ϕm (λm,ϕ
0
m),y−x)

× ρm,kll′ (ϕm)fml′n(λm,ϕ
0
m) dϕm dΦ(λm). (3.25)

The choice of bases inside the isotypic subspaces is not unique. One has to choose
them in such a way that calculation of the transition coefficients cmklnij is as easy
as possible.

Now we calculate inner integrals. In order to simplify the exposition, we
only explain the method, and later on use this method in each case separately.
Consider the action of G̃ on V by matrix-vector multiplication. Let (V/G̃)m,
0 ≤ m ≤M − 1 be the set of all orbits of the mth type. Let ρm be such a chart
that its domain is dense in (V/G̃)m. Let ψm be a chart in G̃/Hm with a dense
domain, and let dψm be the unique probabilistic G̃-invariant measure on the
σ-field of Borel sets of G̃/Hm. Let (V̂ /G̃)M−1 and (V/G̃)M−1) be the orbits of
the principal type. Write the plane wave ei(gϕM−1 (λM−1,ϕ

0
M−1),y−x) as

ei(gϕM−1 (λM−1,ϕ
0
M−1),y−x) = ei(gϕM−1 (λM−1,ϕ

0
M−1),gψM−1 (ρM−1,ψ

0
M−1)),

and consider the plane wave as a function of two variables ϕM−1 and ψM−1 with
domain (G̃/HM−1)2. This function is G̃-invariant:

ei(g̃g̃ϕM−1 (λM−1,ϕ
0
M−1),g̃g̃ψM−1 (ρM−1,ψ

0
M−1))

= ei(g̃ϕM−1 (λM−1,ϕ
0
M−1),g̃ψM−1 (ρM−1,ψ

0
M−1))

for all g̃ ∈ G̃. Denote by ˆ̃GHM−1 the set of all equivalence classes of irre-
ducible representations of G̃ of class 1 with respect to HM−1, and let the
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restriction of the representation ρq ∈ ˆ̃GHM−1 to HM−1 contains dq copies of
the trivial representation of HM−1. By the Fine Structure Theorem 4, the func-
tions dim ρq · ρqll′(ϕM−1)ρ

q
ll′(ψM−1) with ρq ∈ ˆ̃GHM−1 , 1 ≤ l ≤ dim ρq, and

1 ≤ l′ ≤ d′q for some d′q ≤ dq constitute the orthonormal basis in the Hilbert
space L2((G̃/HM−1)2,dϕM−1 dψM−1). Let

jqll′(λM−1,ρM−1) = dim ρq
∫

(G̃/HM−1)2
ei(g̃ϕM−1 (λM−1,ϕ

0
M−1),g̃ψM−1 (ρM−1,ψ

0
M−1))

× ρqll′(ϕM−1)ρ
q
ll′(ψM−1) dϕM−1 dψM−1

be the corresponding Fourier coefficients. The uniformly convergent Fourier
expansion takes the form

ei(g̃ϕM−1 (λM−1,ϕ
0
M−1),g̃ψM−1 (ρM−1,ψ

0
M−1))

=
∑

ρq∈ ˆ̃GHM−1

dim ρq∑
l=1

d′q∑
l′=1

dim ρqjqll′(λM−1,ρM−1)ρ
q
ll′(ϕM−1)ρ

q
ll′(ψM−1).

(3.26)
By continuity, this expansion may be extended from the dense set

(V̂ /G̃)M−1 × (G̃/HM−1) × (V/G̃)M−1 × (G̃/HM−1)

to all of V̂ ×V . Substituting the extended expansion in Equation 3.25, we obtain
the expansion

〈T (x),T (y)〉ij =
M−1∑
m=0

km∑
k=1

dim ρm,k∑
l=1

d′mk∑
l′=1

cmk∑
n=1

cmklnij

∫
(V̂ /G̃)m

jqll′(λm,ρ0)

× ρm,kll′ (ψm)fml′n(λm,ϕ
0
m) dΦ(λm)

(3.27)

which is true on the dense set (R3/K)M−1 × (K/HM−1) and may be extended
to R3 by continuity. Introduce the following notation:

Mn
ij(ϕm) =

km∑
k=1

dim ρm,k∑
l=1

cmklnij ρm,kll′ (ψm). (3.28)

Later we will see that when group G is infinite, the functions Mn
ij(ϕm) are

covariant tensors.
The spectral expansion of the field T (x) may be obtained as follows: write

down the expansion (3.26) separately for e−i(p,x) and for ei(p,y), substitute both
expansions in (3.25) and apply Karhunen’s theorem. We prefer to perform this
step separately in each theorem.

Theorem 13. The one-point correlation tensor of a homogeneous and (G, ρ)-
isotropic random field lies in the space of the isotypic component of the
representation ρ that corresponds to the trivial representation of G̃ and is equal
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to 0 if no such isotypic component exists. Its two-point correlation tensor is given
by Equation (3.27).

Finally, we describe the orbit type stratification for actions of groups G of
type II in the wavenumber domain R̂3 by matrix-vector multiplication. In other
words, we describe the domains of integration in Theorem 13. We include only
the groups that are necessary for our results. The orbit types in the following
descriptions are marked by their stabilisersH1, . . . ,HN−1. The stabiliserH0 = G

corresponds to the minimal orbit type {0} and is omitted, while the stabiliser
HN−1 corresponds to the principal orbit type.

The orbit space R̂3/O(3) in spherical coordinates:

(R̂3/O(3))1 = { (λ, 0, 0) : λ > 0 }, H1 = O(2). (3.29)

For the group O(2)× Zc2 and its subgroups, it is convenient to use cylindrical
coordinates.

The orbit space R̂3/O(2) × Zc2:

(R̂3/O(2) × Zc2)1 = { (0, 0, p3) : p3 > 0 }, H1 = O(2)−,

(R̂3/O(2) × Zc2)2 = { (λ, 0, 0) : λ > 0 }, H2 = Z2 × Zc2,

(R̂3/O(2) × Zc2)3 = { (λ, 0, p3) : λ > 0, p3 > 0 }, H3 = Z−
2 .

(3.30)

The orbit space R̂3/D2n × Zc2, n ≥ 2:

(R̂3/D2n × Zc2)1 = { (0, 0, p3) : p3 > 0 }, H1 = Dv
2n,

(R̂3/D2n × Zc2)2 = { (ρ, 0, 0) : ρ > 0 }, H2 = Dv
2(C ′

21, σv2),

(R̂3/D2n × Zc2)3 = { (ρ, π/(2n), 0) : ρ > 0 }, H3 = Dv
2(C ′

22, σd1),

(R̂3/D2n × Zc2)4 = { (ρ, ϕp, 0) : ρ > 0, 0 < ϕp < π/(2n) },
H4 = Z−

2 (σh),

(R̂3/D2n × Zc2)5 = { (ρ, 0, p3) : ρ > 0, p3 > 0 }, H5 = Z−
2 (σv1),

(R̂3/D2n × Zc2)6 = { (ρ, π/(2n), p3) : ρ > 0, p3 > 0 }, H6 = Z−
2 (σd1),

(R̂3/D2n × Zc2)7 = { (ρ, ϕp, p3) : ρ > 0, 0 < ϕp < π/(2n), p3 > 0 },
H7 = Z1. (3.31)

Here, notation G1(g) means the unique subgroup of G that is isomorphic to
G1 and contains the element g.

The orbit space R̂3/D3 × Zc2:

(R̂3/D3 × Zc2)1 = { (0, 0, p3) : p3 > 0 }, H1 = Dv
3 ,

(R̂3/D3 × Zc2)2 = { (ρ, 0, 0) : ρ > 0 }, H2 = Dv
2 ,

(R̂3/D3 × Zc2)3 = { (ρ, ϕp, 0) : ρ > 0, 0 < ϕp < π/3 }, H3 = Z−
2 (σd1),
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(R̂3/D3 × Zc2)4 = { (ρ, 0, p3) : ρ > 0, p3 > 0 }, H4 = Z−
2 (σv1),

(R̂3/D3 × Zc2)5 = { (ρ, ϕp, p3) : ρ > 0, 0 < ϕp < π/3, p3 > 0 },
H5 = Z1. (3.32)

The orbit space R̂3/D2 × Zc2:

(R̂3/D2 × Zc2)1 = { (0, 0, p3) : p3 > 0 }, H1 = Dv
2(C2x),

(R̂3/D2 × Zc2)2 = { (ρ, 0, 0) : ρ > 0 }, H2 = Dv
2(C2z), (3.33)

(R̂3/D2 × Zc2)3 = { (ρ, π/2, 0) : ρ > 0 }, H3 = Dv
2(C2y),

(R̂3/D2 × Zc2)4 = { (ρ, ϕp, 0) : ρ > 0, 0 < ϕp < π/2 }, H4 = Z−
2 (σx),

(R̂3/D2 × Zc2)5 = { (ρ, 0, p3) : ρ > 0, p3 > 0 }, H5 = Z−
2 (σy),

(R̂3/D2 × Zc2)6 = { (ρ, π/2, p3) : ρ > 0, p3 > 0 }, H6 = Z−
2 (σz),

(R̂3/D2 × Zc2)7 = { (ρ, ϕp, p3) : ρ > 0, 0 < ϕp < π/2, p3 > 0 },
H7 = Z1.

The orbit space R̂3/Z2 × Zc2:

(R̂3/Z2 × Zc2)1 = { (ρ, 0, 0) : ρ > 0 }, H1 = Z−
2 ,

(R̂3/Z2 × Zc2)2 = { (ρ, π, 0) : ρ > 0 }, H2 = Z−
2 ,

(R̂3/Z2 × Zc2)3 = { (0, 0, p3) : p3 > 0 }, H3 = Z2,

(R̂3/Z2 × Zc2)4 = { (ρ, 0, p3) : ρ > 0, p3 > 0 }, H4 = Z2,

(R̂3/Z2 × Zc2)5 = { (ρ, π, p3) : ρ > 0, p3 > 0 }, H5 = Z2,

(R̂3/Z2 × Zc2)6 = { (ρ, ϕp, 0) : ρ > 0, 0 < ϕp < π }, H6 = Z−
2 ,

(R̂3/Z2 × Zc2)7 = { (ρ, ϕp, p3) : ρ > 0, 0 < ϕp < π, p3 > 0 }, H7 = Z1.
(3.34)

The orbit space R̂3/Zc2:

(R̂3/Zc2)1 = { (ρ, 0, 0) : ρ > 0 }, H1 = Z1,

(R̂3/Zc2)2 = { (ρ, ϕ, 0) : 0 < ϕ < π }, H2 = Z1,

(R̂3/Zc2)3 = { (ρ, ϕ, p3) : p3 > 0 }, H3 = Z1.

(3.35)

For the groups that are not the subgroups of O(2)×Zc2, it is convenient to use
Cartesian coordinates.

The orbit space R̂3/O × Zc2:

(R̂3/O × Zc2)1 = { (0, 0, p3) : p3 > 0 }, H1 = Dv
4 ,

(R̂3/O × Zc2)2 = { (p1, p2, p3) : p1 = p2 = p3 > 0 }, H2 = Dv
3 ,

(R̂3/O × Zc2)3 = { (0, p2, p3) : 0 < p2 = p3 }, H3 = Dv
2(σx, σd4),

(R̂3/O × Zc2)4 = { (0, p2, p3) : 0 < p2 < p3 }, H4 = Z−
2 (σx),
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(R̂3/O × Zc2)5 = { (p1, p2, p3) : 0 < p1 = p2 < p3 }, H5 = Z−
2 (σd1),

(R̂3/O × Zc2)6 = { (p1, p2, p3) : 0 < p1 < p2 = p3 }, H6 = Z−
2 (σd4),

(R̂3/O × Zc2)7 = { (p1, p2, p3) : 0 < p1 < p2 < p3 }, H7 = Z1. (3.36)

The orbit space R̂3/T × Zc2:

(R̂3/T × Zc2)1 = { (0, p2, 0) : p2 > 0 }, H1 = Dv
2(C2x),

(R̂3/T × Zc2)2 = { (p1, p2, p3) : 0 < p1 = p2 = p3 }, H2 = Z3,

(R̂3/T × Zc2)3 = { (p1, 0, p3) : p1 > 0, p3 > 0 }, H3 = Z−
2 (σy),

(R̂3/T × Zc2)4 = { (p1, p2, p3) : 0 < p1 = p2 < p3 }, H4 = Z1,

(R̂3/T × Zc2)5 = { (p1, p2, p3) : 0 < p1 < min{p2, p3} }, H5 = Z1.

(3.37)

Next, we explain how we calculate the above stratifications, using Equa-
tion (3.33) as an example. In notation of Altmann & Herzig (1994), the action
of G on R̂3 is the restriction to G of the representation of O(3) that cor-
responds to the value of j = 1 (in our notation, this is ρ1). The value of
j = 1 is located in the third line of Altmann & Herzig (1994 Table 31.10).
This line tells us that G acts by the representation B1u ⊕ B2u ⊕ B3u. All
the summands are one-dimensional. We take a look at the lines of Altmann
& Herzig (1994 Table 31.4) labelled by B1u, B2u and B3u. The character values
on each element of G are diagonal elements of the corresponding representation
matrix. The off-diagonal element are zeroes. It is easy to see that the prin-
cipal orbit type is Z1, the corresponding stratum is (R̂3/D2 × Zc2)7 and has
dimension 3.

The boundary of this stratum contains three two-dimensional strata (R̂3/D2×
Zc2)i, 4 ≤ i ≤ 6. The stationary subgroup of the stratum (R̂3/D2 × Zc2)6 is
{E, σz}. By Altmann & Herzig (1994 Table 31.0), this is Z−

2 (σz). The stationary
subgroups of the two remaining strata are conjugate to Z−

2 (σz).
Similarly, the boundary of the principal stratum contains three one-dimensi-

onal strata (R̂3/D2 × Zc2)i, 1 ≤ i ≤ 3. The stationary subgroup of the stratum
(R̂3/D2 ×Zc2)6 is {E,C2z, σx, σy}. By Altmann & Herzig (1994 Table 31.0), this
is Dv

2(C2z). The stationary subgroups of the two remaining strata are conjugate
to Dv

2(C2z).

3.4 The Case of Rank 0

Put r = 0. The representation ρ is trivial. The action g · x is trivial: g · x = x.
There is only one conjugacy class of stabilisers of this action: [H0] = [O(d)]. The
fixed point space of H0 is V = R1. The only possible choice for G is G = O(d).
A V-valued homogeneous and (G, ρ)-isotropic random field τ(x) is called just
isotropic and may describe temperature. The stratification of the set R̂3/O(3) is
given by Equation (3.29).
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Schoenberg (1938) found the general form of the two-point correlation tensor
of a homogeneous and (O(d), ρ)-isotropic random field, where ρ is the trivial
representation of the group O(d).

Theorem 14. Formula

〈τ(x), τ(y)〉 = 2(d−2)/2Γ (d/2)
∫ ∞

0

J(d−2)/2(λ‖y − x‖)
(λ‖y − x‖)(d−2)/2

dΦ(λ) (3.38)

establishes a one-to-one correspondence between the set of two-point correlation
functions of homogeneous and (O(d), ρ)-isotropic random fields on the space Rd

and the set of finite Borel measures Φ on [0,∞).

In particular, for d = 2 we have

〈τ(x), τ(y)〉 =
∫ ∞

0

J0(λ‖y − x‖) dΦ(λ),

while for d = 3

〈τ(x), τ(y)〉 =
∫ ∞

0

sin(λ‖y − x‖)
λ‖y − x‖ dΦ(λ).

Proof. Let’s look, how Theorem 13 works in this case. The action of the group
G on the wavenumber domain R̂d has N = 2 orbit types. The set (R̂d/O(d))0 of
principal orbits may be embedded into the wavenumber domain as

(R̂d/O(d))0 = {p ∈ R̂d : p1 = · · · = pd−1 = 0, pd > 0 },

while (R̂d/O(d))1 = {0}. The chart λ0 maps its domain (R̂d/O(d))0 to R1, while
the chart λ1 maps its domain (R̂d/O(d))1 to R0 = {0}. Both charts are just
the norm in the wavenumber domain. The domain of the chart ψ0 must be a
principal orbit, a centred sphere in the wavenumber domain. The chart itself
is known as spherical coordinates. It does not cover all of the sphere, but the
O(d)-invariant probabilistic measure of its domain is equal to 1. The chart ψ1

maps 0 ∈ R̂d to 0 ∈ R0. The space Ṽ is R1, the representation ρ̃ is trivial. Both
isotypic subspaces V0

n are R1, both convex compacta C0
n are equal to {1} ⊂ R1.

We obtain

〈τ(x), τ(y)〉 =
∫ ∞

0

∫
‖p‖=λ

ei(p,y−x) dgλ dΦ(λ). (3.39)

Here dgλ is the O(d)-invariant probabilistic measure on the centred sphere of
radius λ in the wavenumber domain.

To calculate the inner integral, apply the expansion of the plane wave in spher-
ical harmonics (2.60) to the plane wave ei(p,y−x), substitute it in (3.39), and use
the orthonormality property of real spherical harmonics. We obtain (3.38).

Let (ρ, θ1, . . . , θd−2, ϕ) be the spherical coordinates in V .



3.4 The Case of Rank 0 129

Theorem 15. The spectral expansion of a homogeneous and (O(d), ρ)-isotropic
random field on a d-dimensional real vector space V has the form

τ(x) = C +
√

2d−1Γ (d/2)πd/2
∞∑
�=0

h(d,�)∑
m=1

Sm� (θ1, . . . , θd−2, ϕ)

×
∫ ∞

0

J�+(d−2)/2(λρ)
(λρ)(d−2)/2

dZm� (λ),

(3.40)

where C = 〈τ(x)〉 ∈ R, and where Zm� is a sequence of uncorrelated real-valued
orthogonal stochastic measures on [0,∞) with the measure Φ of Theorem 14 as
their common control measure.

Proof. Apply (2.60) to the plane waves ei(p,y) and ei(p,−x) separately, multiply
both expansions and substitute them in (3.39). Apply Karhunen’s theorem, but
be careful: the obtained class of random fields still contains complex-valued fields.
To remove them, force the random measures Zm� to be real-valued.

Remark 2. We say that a (O(d), ρ)-isotropic random field τ(x) has an abso-
lute continuous spectrum if the measure Φ(λ) of Equation 3.38 is absolutely
continuous with respect to the measure

dν(λ) =
2πd/2

Γ (d/2)
λd−1 dλ, (3.41)

see Ivanov & Leonenko (1989). The Radon–Nykodym derivative dΦ(λ)
dν(λ) is called

the isotropic spectral density of the above field. We give the following definition.

Definition 6. A homogeneous and (O(d), ρ)-isotropic random field τ(x) has
absolutely continuous spectrum if the measure dΦ(λ) of (3.38) is absolutely
continuous with respect to the measure (3.41).

If a homogeneous and (O(d), ρ)-isotropic random field τ(x) has absolutely
continuous spectrum, then (3.38) takes the form

〈τ(x), τ(y)〉 = (2π)d/2
∫ ∞

0

J(d−2)/2(λ‖y − x‖)
(λ‖y − x‖)(d−2)/2

λd−1f(λ) dλ,

In particular, for d = 2 we have

〈τ(x), τ(y)〉 = 2π
∫ ∞

0

J0(λ‖y − x‖)λf(λ) dλ,

while for d = 3

〈τ(x), τ(y)〉 = 4π
∫ ∞

0

sin(λ‖y − x‖)
λ‖y − x‖ λ2f(λ) dλ.

It is left to the reader to prove that both results hold true for the case of
G = SO(d).
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3.5 The Case of Rank 1

Put r = 1. Denote the corresponding random field by v(x), it may describe the
velocity of a turbulent fluid. The space P+

Σ (V ⊗r) is equal to V . The represen-
tation ρ is as follows: ρ(g) = g. The action g · x is given by the matrix-vector
multiplication. There are two conjugacy classes of stabilisers for this action:
[G0] = [O(d)], the minimal orbit type, and [G1] = [O(d− 1)], the principal orbit
type. The fixed point space of G0 is V0 = {0}, such a field is just equal to 0
everywhere. The fixed point set of H1 is V1 = R1. Denote by T the basis vector
in V1.

The case of d = 2 have already been considered in Example 23. Consider
the case of d = 3. By (3.29), G1 = O(2) and T = (0, 1, 0)�. According to
Table 2.1, the normaliser of H1 is N(H1) = O(2)×Zc2. There are two choices for
G: G = O(2) and G = O(2) × Zc2.

In the first case the representation ρ(g) = 1 is trivial. This case is new, because
the group G = O(2) is not of type II, but of type I. We prove a lemma that will
be useful for investigation of all groups of type I.

Lemma 2. Let V be a finite-dimensional real Euclidean linear space and let ρ
be the trivial representation of the group Z1 in V. Let {Tm : 1 ≤ m ≤M } be an
orthonormal basis in V. The one-point correlation tensor of a homogeneous and
(Z1, ρ)-isotropic random field V (x) is an arbitrary tensor V0 ∈ V. Its two-point
correlation tensor has the form

〈V (x), V (y)〉 =
∫

R̂3/Zc
2

cos(p,y − x)fS(p) dΦ(p)

+
∫

(R̂3/Zc
2)1−3

sin(p,y − x)fΛ(p) dΦ(p),

where

fS(p) = f(p) + f�(p), fΛ(p) = i−1(−f(p) + f�(p)), (3.42)

f(p) is a Φ-equivalence class of measurable functions acting from R̂3/Zc2 to the
set of non-negative-definite Hermitian linear operators on VC with unit trace,
and Φ is a finite measure on R̂3/Zc2. The field has the form

V (x) =
M∑
m=1

CmT
m +

M∑
m=1

∫
R̂3/Zc

2

cos(p,x) dZSm(p)Tm

+
M∑
m=1

∫
(R̂3/Zc

2)1−3

sin(p,x) dZΛm(p)Tm,

where
ZS(p) = (ZS1 (p), . . . , ZSM (p))�,

ZΛ(p) = (ZΛ1 (p), . . . , ZΛM (p))�
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are centred V-valued random measures on the corresponding sets with control
measure fS(p) dΦ(p) and cross-correlation

E[ZS(A) ⊗ZΛ(B)] = −E[ZΛ(A) ⊗ZS(B)] =
∫
A∩B

fΛ(p) dΦ(p). (3.43)

Proof. The representation ρ is a multiple of the irreducible trivial representation,
therefore the one-point correlation tensor may be any constant tensor. Moreover,
G̃ = Zc2, and the Fourier expansion (3.26) takes the form of de Moivre’s for-
mula ei(p,x) = cos(p,x) + i sin(p,x). By Lemma 1, the representation ρ̃ has the
form

ρ̃ =
M(M + 1)

2
Ag ⊕

M(M − 1)
2

Au.

Let i be the non-identity element of the group Zc2. The linear operator
M(M+1)

2 Ag(i) acts on the matrix fS(p) and does not change it, while the opera-
tor M(M−1)

2 Au(i) acts on fΛ(p) and changes its sign. The element i acts on the
exponent ei(y−x) by

iei(y−x) = e−i(y−x).

We obtain

〈V (x), V (y)〉 =
∫

R̂3/Zc
2

ei(p,y−x)f(p) dΦ(p) +
∫

R̂3/Zc
2\{0}

e−i(p,y−x)f�(p) dΦ(p)

=
∫

R̂3/Zc
2

cos(p,y − x)fS(p) dΦ(p)

+
∫

(R̂3/Zc
2)1−3

sin(p,y − x)fΛ(p) dΦ(p).

The last part follows from Karhunen’s theorem.

Let (ρ, ϕ, x3) be the cylindrical coordinates in the space domain R3, and let
(λ, ϕp, p3) be those in the wavenumber domain R̂3.

Theorem 16. The one-point correlation tensor of a homogeneous and
(O(2), ρ+)-isotropic random field has the form

〈v(x)〉 = CT , C ∈ R.

Its two-point correlation tensor has the form

〈v(x),v(y)〉 =
1
2π

∫ ∞

0

∫ ∞

0

J0(λρ) cos(p3(y3 − x3)) dΦ(λ, p3), (3.44)
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where Φ is a finite Borel measure on [0,∞)2. The field has the form

v(ρ, ϕ, x3) = CT +
1√
2π

∫ ∞

0

∫ ∞

0

J0(λρ)[cos(p3x3) dZ01(λ, p3)

+ sin(p3x3) dZ02(λ, p3)]T

+
1√
π

∞∑
�=1

∫ ∞

0

∫ ∞

0

J�(λρ)[cos(p3x3) cos(�ϕ) dZ�1(λ, p3)

+ cos(p3x3) sin(�ϕ) dZ�2(λ, p3) + sin(p3x3) cos(�ϕ) dZ�3(λ, p3)

+ sin(p3x3) sin(�ϕ) dZ�4(λ, p3)]T , (3.45)

where Z�i are centred real-valued uncorrelated random measures on [0,∞)2 with
control measure dΦ(λ, p3).

Proof. In contrast to Theorem 14, this time the group G is not of type II, but is
of type I. By Lemma 1, G̃ = O(2) × Zc2 and the representation ρ̃ is trivial. The
orbit space R̂3/G̃ is described by Equation (3.30) and may be embedded into
the wavenumber domain as follows:

R̂3/G̃ = { (λ, 0, p3) : λ ≥ 0, p3 ≥ 0 }.

Then we obtain:

〈v(x),v(y)〉 =
1
4π

∫ ∞

0

∫ ∞

0

∫
‖(p1,p2)�‖=λ

ei(p,y−x) dϕp dΦ(λ, p3),

where the domain of the inner integral is the union of two circles

{(λ, ϕp, p3)} ∪ {(λ, ϕp,−p3)}.

To calculate the inner integral, apply the expansion (2.61) to the func-
tion ei(p1(y1−x1)+p2(y2−x2) and apply the de Moivre formula to the function
ei(p3(y3−x3), substitute the obtained expansions in (3.39), and use the orthonor-
mality property of sines and cosines. We obtain (3.44).

For the last part, apply the above expansions twice. The Jacobi–Anger
expansion is applied to the functions ei(p1y1+p2y2) and e−i(p1x1+p2x2) separately.
Similarly, the de Moivre formula is applied to eip3y3 and e−ip3x3 separately. Then,
use Karhunen’s theorem.

In the second case, the representation ρ is ρ(g1, g2) = ρ+(g1)⊗̂Au(g2), g1 ∈
O(2), g2 ∈ Zc2.

Theorem 17. The one-point correlation tensor of a homogeneous and (O(2) ×
Zc2, ρ

+⊗̂Au)-isotropic random field is equal to 0. Its two-point correlation tensor
has the form (3.44). The field has the form (3.45) with C = 0.

Proof. The first part follows from the fact that ρ does not contain the trivial
component. The representation S2(ρ) is, however, trivial. We are in the conditions
of Theorem 16, and the rest of our theorem follows.
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Observe that there are no fixed point set equal to R3. Just add it; that is, con-
sider the (O(3), ρ1)-problem, where G = O(3), V = R3 and ρ1(g) = g. Robertson
(1940) gave a partial solution to the (O(3), ρ1)-problem. Put z := y − x.

Theorem 18. The one-point correlation tensor of a homogeneous and
(O(3), ρ1)-isotropic random field is

〈v(x)〉 = 0.

Its two-point correlation tensor has the form

Rij(z) := 〈v(x),v(y)〉ij = A(‖z‖)zizj +B(‖z‖)δij . (3.46)

Proof. Note that by (2.38) δij is the only covariant of degree 0 and of order 2,
while by (2.41) zizj is the only covariant of degree 2 and of order 2. That is,
Theorem 18 is a particular case of the Wineman–Pipkin Theorem 7.

Yaglom (1948) and Yaglom (1957) gave a more detailed description of the
two-point correlation tensor of a homogeneous and (O(d), ρ)-isotropic random
field with ρ(g) = g.

Theorem 19. The two-point correlation tensor of a homogeneous and (O(d), ρ)-
isotropic random field has the form

Rij(z) =
∫ ∞

0

[
Y

(1)
d (λ‖z‖) zizj‖z‖2

+ Y
(2)
d (λ‖z‖)δij

]
dΦ1(λ)

+
∫ ∞

0

[
Y

(3)
d (λ‖z‖) zizj‖z‖2

+ Y
(4)
d (λ‖z‖)δij

]
dΦ2(λ),

(3.47)

where Φ1 and Φ2 are two finite measures on [0,∞) with

Φ1({0}) = Φ2({0}), (3.48)

and where

Y
(1)
d (t) = −2(d−2)/2Γ (d/2)

J(d+2)/2(t)
t(d−2)/2

,

Y
(2)
d (t) = 2(d−2)/2Γ (d/2)

Jd/2(t)
td/2

,

Y
(3)
d (t) = −Y (1)

d (t),

Y
(4)
d (t) = 2(d−2)/2Γ (d/2)

[
J(d−2)/2(t)
t(d−2)/2

−
Jd/2(t)
td/2

]
.

For the case of d = 2, this theorem is proved in Example 23. We give proof of
Theorem 19 only for the case of d = 3; in the other cases the proof is similar.
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Proof. This time we have V = R3, G = O(3), V = V and ρ = ρ1, where
we use notation of Example 17. The representation ρ̃1 is S2(ρ1). Its isotypic
decomposition is as follows.

ρ̃1 = ρ0 ⊕ ρ2.

The uncoupled basis in the space Ṽ = S2(V) is formed by the Godunov–
Gordienko matrices

T 0,0 = g0
0[1,1], T 2,k = gk2[1,1].

The group H0 is O(2). The two-dimensional space V0 consists of tensors of
rank 2r = 2. Its basis is formed by the Godunov–Gordienko matrices

T 0,0
ij = g

0[i,j]
0[1,1] =

1√
3
E, T 2,0

ij = g
0[i,j]
2[1,1] =

1√
6

⎛⎝−1 0 0
0 2 0
0 0 −1

⎞⎠.
The intersection of the space V0 with the convex compact set of symmetric
non-negative-definite 3 × 3 matrices with unit trace is easily obtained as the
interval

C0 =

{
1√
3
T 0,0 + aT 2,0 : a ∈

[
− 1√

6
,

√
2√
3

]}
.

The group H1 is O(3). The one-dimensional space V1 is generated by the
matrix T 0,0. The convex compact set C1 contains one point: the matrix 1

3E.
The matrix f0(λ), λ > 0, takes values in C0 and has the form

f0(λ) = f0
0,0(λ)T 0,0 + f0

2,0(λ)T 2,0. (3.49)

Compare (3.49) with the definition of the set C0. We see that f0
0,0(λ) = 1√

3
for

all λ > 0. At the point λ = 0, the matrix f0(0) must be equal to 1
3E. It follows

that f1
0,0(0) = 1√

3
and f1

2,0(0) = 0.
The set of extreme points of the one-dimensional simplex C0 consists of two

points:

A1 =
1√
3
T 0,0 − 1√

6
T 2,0, A2 =

1√
3
T 0,0 +

√
2√
3
T 2,0.

By the Carathéodory theorem (Theorem 9), we have a unique representation of
the matrix f0

0 (λ), λ > 0 as

f0
0 (λ) = u1(λ)A1 + u2(λ)A2

with u1(λ) ≥ 0, u2(λ) ≥ 0, u1(λ) + u2(λ) = 1. Substitute the values of A1 and
A2 in this formula. We obtain

f0(λ) =
1√
3
(u1(λ) + u2(λ))T 0,0 +

(
1√
6
u1(λ) +

√
2√
3
u2(λ)

)
T 2,0.
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Compare the coefficients of this expansion with those of (3.49). We see that

fn0,0(λ) =
1√
3
(u1(λ) + u2(λ)), fn2,0(λ) = − 1√

6
u1(λ) +

√
2√
3
u2(λ). (3.50)

Equation 3.27 takes the form

〈v(x),v(y)〉ij =
1
4π

∫ ∞

0

∫ 2π

0

∫ π

0

ei(p,y−x)[M0
ijf

n
0,0(λ)

+M2
ij(ϕp, θp)f

n
0,2(λ)] sin θ dϕdθ dΦ(λ),

where n = 0 for λ > 0 and n = 1 for λ = 0, and where

M0
ij =

1√
3
δij , M2

ij(ϕp, θp) =
2∑

k=−2

g
k[i,j]
2[1,1]ρ

2
k0(ϕp, θp)

according to (3.28).
Substitute (3.50) in this formula. We obtain

〈v(x),v(y)〉ij =
1
4π

∫ ∞

0

∫
S2

ei(p,y−x)

[(
1√
3
M0
ij(p) −

1√
6
M2
ij(p)

)
u1(λ)

+

(
1√
3
M0
ij(p) +

√
2√
3
M2
ij(p)

)
u2(λ)

]
sin θ dϕdθ dΦ(λ),

(3.51)
To calculate the inner integral in Equation (3.51), use the Rayleigh expansion

(2.62) and take into account (2.55) and (2.56). We have

〈v(x),v(y)〉ij =
∫ ∞

0

(
1√
3
j0(λρ)M

0,1
ij (z) +

1√
6
j2(λρ)M

2,1
ij (z)

)
dΦ1(λ)

+
∫ ∞

0

(
1√
3
M0,1
ij (z)j0(λρ) −

√
2√
3
M2,1
ij (z)j2(λρ)

)
dΦ2(λ),

(3.52)
where z := y − x and where dΦk(λ) = uk(λ) dΦ(λ), k = 1, 2.

We see that M0
ij is a symmetric covariant of degree 0 and of order 2, while M2

ij

is a symmetric covariant of degree 2 and of order 2. Indeed, M0(gp) = M0(p)
for all g ∈ O(3) and

(M2(gp))ij =
2∑

k=−2

g
k[i,j]
2[1,1]ρ

2
k0(gp) = (ρ2(g)M2(gp))ij .

The covariants M0
ij and M2

ij must be linear combinations of basic covariants
L0
ij = δij and L2

ij(p) = pipj . Indeed,

M0
ij =

1√
3
L0
ij , M2

ij(p) = − 1√
6
L0
ij +

√
3√
2
L2
ij(p). (3.53)
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The first equality is obvious. To prove the second one, use (2.17) with ρ = σ = 1.
We obtain

pipj
‖p‖2

=
1
3
δij +

1∑
k=−1

g
k[i,j]
1[1,1]ρ

1
k0(p)g

0[0,0]
1[1,1] +

2∑
k=−2

g
k[i,j]
2[1,1]ρ

2
k0(p)g

0[0,0]
2[1,1] .

Using the values g0[0,0]
1[1,1] = 0 and g0[0,0]

2[1,1] =
√

2/3, we obtain the second equality.

Substitute (3.53) to (3.52). We obtain

〈v(x),v(y)〉ij =
∫ ∞

0

[(
1
3
j0(λρ) −

1
6
j2(λρ)

)
δij +

1
2
j2(λρ)

zizj
‖z‖2

]
dΦ1(λ)

+
∫ ∞

0

[(
1
3
j0(λρ) +

1
3
j2(λρ)

)
δij − j2(λρ)

zizj
‖z‖2

]
dΦ2(λ).

Using (2.59), we obtain

〈v(x),v(y)〉ij =
1
2

∫ ∞

0

[(
j0(λρ) −

j1(λρ)
λρ

)
δij + j2(λρ)

zizj
ρ2

]
dΦ1(λ)

+
∫ ∞

0

[
j1(λρ)
λρ

δij − j2(λρ)
zizj
ρ2

]
dΦ2(λ),

which differs from Theorem 19 by a constant.

If the random field v(x) has absolutely continuous spectrum, then

Rij(z) = 2π
∫ ∞

0

[(
j0(λρ) −

j1(λρ)
λρ

)
δij + j2(λρ)

zizj
ρ2

]
f1(λ)λ2 dλ

+ 4π
∫ ∞

0

[
j1(λρ)
λρ

δij − j2(λρ)
zizj
ρ2

]
f2(λ)λ2 dλ,

where

fk(λ) := uk(λ)
dν(λ)
dΦ(λ)

, k = 1, 2.

We say that the random field v(x) has two isotropic spectral densities f1(λ) and
f2(λ).

The complete solution to the (O(3), ρ1)-problem has the following form.
Denote

b�
′m′j
�mi,1 = i�−�

′√
(2�+ 1)(2�′ + 1)

(
1
3
δijg

0[m,m′]
0[�,�′] g

0[0,0]
0[�,�′]

− 1
5
√

6
g
0[0,0]
2[�,�′]

2∑
n=−2

g
n[i,j]
2[1,1]g

−n[m,m′]
2[�,�′]

)
,

and

b�
′m′j
�mi,2 = i�−�

′√
(2�+ 1)(2�′ + 1)

(
1
3
δijg

0[m,m′]
0[�,�′] g

0[0,0]
0[�,�′]

+
√

2
5
√

3
g
0[0,0]
2[�,�′]

2∑
n=−2

g
n[i,j]
2[1,1]g

−n[m,m′]
2[�,�′]

)
.
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Let < be the lexicographic order on triples (�,m, i), � ≥ 0, −� ≤ m ≤ �, −1 ≤ i

≤ 1. Let L1 and L2 be infinite lower triangular matrices from Cholesky factori-
sation of non-negative-definite matrices b�

′m′j
�mi,1 and b�

′m′j
�mi,2. Finally, let Z1

�mi and
Z2
�mi be the set of centred uncorrelated random measures on [0,∞) with Φ1 being

the control measure for Z1
�mi and Φ2 for Z2

�mi.

Theorem 20. The homogeneous and (O(3), ρ1)-isotropic random field has the
form

vi(r, θ, ϕ) = 2
√
π

∞∑
�=0

�∑
m=−�

∫ ∞

0

j�(λr) dZ1′
�mi(λ)Sm� (θ, ϕ)

+ 2
√
π

∞∑
�=0

�∑
m=−�

∫ ∞

0

j�(λr) dZ2′
�mi(λ)Sm� (θ, ϕ),

where

Zk
′
�mi(A) =

∑
(�′,m′,j)�(�,m,i)

Lk�mi,�′m′jZ
k
�′m′j(A),

with k ∈ {1, 2} and A ∈ B([0,∞)).

Proof. Write down the Rayleigh expansions for ei(p,x) and for e−i(p,y) and sub-
stitute them in (3.51). To simplify the result, use the Gaunt integral. As before,
we finish proof by using the infinite-dimensional Cholesky decomposition and
Karhunen’s theorem.

Before using the infinite-dimensional Cholesky decomposition, we may group
terms like we did in Example 23 in order to obtain an expansion with real-valued
terms. This may be left to the reader.

3.6 The Case of Rank 2

Put r = 2. The space P+
σ (V ⊗2) is equal to V = S2(V ). It carries the representa-

tion ρ(g) = S2(g) of the group G = O(3). Denote by E(x) a homogeneous and
(G, ρ)-isotropic random field , it may describe the strain tensor. The action g ·X
is given by g ·X = gXg−1. Consider the case of d = 3.

As we already know from Section 3.1, there are three symmetry classes,
[G0] = [D2 × Zc2], [G1] = [O(2) × Zc2] and [G2] = [O(3)]. The dimensions of
the corresponding fixed point sets can be calculated using Equation (2.21). We
may, however, use another method.

Start from the case of G = G0 = D2 × Zc2. First, we determine the struc-
ture of the representation ρ(g) = g of this group. By Altmann & Herzig (1994,
Table 31.10),

ρ = B1u ⊕B2u ⊕B3u. (3.54)
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Here and in what follows, we use notations for irreducible representations of finite
groups from Altmann & Herzig (1994). Then, we determine the structure of the
representation S2(g), using Altmann & Herzig (1994, Table 31.8). We obtain

S2(g) = 3Ag ⊕B1g ⊕B2g ⊕B3g.

That is, S2(g) contains three copies of the trivial representation Ag on the diag-
onal, then dimVH = 3 and VH consists of diagonal matrices. According to
Table 2.1, the normaliser of H2 is N(H2) = O × Zc2. By Altmann & Herzig
(1994, page 50), there are four groups between G2 and NO(3)(G2): D2 × Zc2,
D4 × Zc2, T × Zc2 and O × Zc2.

In the ‘smallest’ case of G = D2 × Zc2, the representation ρ is trivial by
definition of VG. That is, ρ = 3Ag. Choose the basis as follows.

TAg,1 =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠, TAg,2 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠, TAg,3 =

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠.
The stratification of the orbit space R̂3/D2 × Zc2 is given by (3.33).

Theorem 21. The two-point correlation tensor of a homogeneous and (D2 ×
Zc2, 3Ag)-isotropic random field has the form

〈E(x), E(y)〉 =
∫

R̂3/D2×Zc
2

cos(p1(y1 − x1)) cos(p2(y2 − x2))

× cos(p3(y3 − x3))f(p) dΦ(p),

where f(p) is a Φ-equivalence class of measurable functions acting from R̂3/D2×
Zc2 to the convex compact set C0 of non-negative-definite symmetric linear
operators on VH with unit trace. The field has the form

E(x) =
3∑
k=1

CkE
A,k +

8∑
l=1

3∑
k=1

∫
R̂3/D2×Zc

2

vl(p,x) dZkl(p)TAg,k,

where Ck ∈ R, vl(p,x) are eight different combinations of cosines and sines
of p1x1, p2x2 and p3x3, and Zl(p) = (Z1l(p), . . . , Z3l(p))� are eight centred
real-valued uncorrelated random measures on R̂3/D2 × Zc2 with control measure
f(p) dΦ(p).

Proof. We proceed similarly to proofs of Theorems 14 and 16. The representa-
tion S2(ρ) and its restrictions to the stationary subgroup of any stratum of the
set R̂3/D2 ×Zc2 are trivial. That is, all strata equally contribute to the two-point
correlation tensor. We start from the determination of the spherical Bessel func-
tion j(p,y − x) that corresponds to the group G = D2 × Zc2. The group G has
eight elements. By definition,
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j(p,y − x) =
1
8

∑
g∈G

ei(gp,y−x).

It follows from Equation 3.54 that the matrices g are diagonal and their diag-
onal elements are the characters of the components B1u, B2u and B3u. The
above characters are stored in Altmann & Herzig (1994, Table 31.4). A simple
calculation gives

j(p,y − x) = cos(p1(y1 − x1)) cos(p2(y2 − x2)) cos(p3(y3 − x3)).

The first part of Theorem 21 follows. The second part is proved by applying
Karhunen’s theorem to the first part.

Remark 3. Every time, when the group G is of type II and the representation ρ
is trivial, the corresponding result and its proof resemble the case of Theorem 21.
We left formulations and proofs of all such cases to the reader.

In contrast to the ‘smallest’ case of G = D2 × Zc2, consider the ‘largest’ case
of G = O × Zc2. As we will see later, this time different strata give different
contributions to the two-point correlation tensor of the field.

As usual, we start by determining the structure of the representation ρ(g) = g

of this group. By Altmann & Herzig (1994, Table 71.10), we have ρ = T1u. The
structure of the symmetric tensor square of T1u is stored in Altmann & Herzig
(1994, Table 71.5) in the column labelled ‘2’:

S2(T1u) = A1g ⊕ Eg ⊕ T2g.

Moreover, the representation A1g acts in the one-dimensional space of diagonal
matrices generated by the matrix T 2

ij = 1√
3
δij , while the representation Eg acts

in the two-dimensional space of diagonal matrices generated by

T 1 =
1√
2

⎛⎝1 0 0
0 0 0
0 0 −1

⎞⎠, T 3 =
1√
6

⎛⎝−1 0 0
0 2 0
0 0 −1

⎞⎠.
Then we have ρ = A1g ⊕ Eg. The structure of the symmetric tensor square of ρ
is stored in Altmann & Herzig (1994, Table 71.8):

S2(ρ) = 2A1g ⊕ 2Eg.

The orbit space R̂3/O × Zc2 is stratified by (3.36). The stationary subgroup
of the principal stratum is Z1, the restriction of the representation S2(ρ) to Z1

is trivial, and the condition f(gp) = S2(ρ)(g)f(p) does not restrict the values
of f(p). That is, the restriction of f(p) to the principal stratum (R̂3/O × Zc2)7
takes values in the convex compact set C0 of non-negative-definite 3×3 matrices
with unit trace in the basis {T 1, T 2, T 3}. Denote this restriction by f0(p).

The first copy of A1g acts in the one-dimensional space generated by the
basis tensor T 1 = T 2 ⊗ T 2, the second copy in the space generated by
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T 2 = 1√
2
(T 1 ⊗ T 1 + T 3 ⊗ T 3), the first copy of Eg acts in the two-dimensional

space generated by T 3 = 1√
2
(T 1⊗T 2+T 2⊗T 1) and T 4 = 1√

2
(T 3⊗T 2+T 2⊗T 3),

the second copy of Eg in the space generated by T 5 = 1√
2
(T 1 ⊗ T 1 − T 3 ⊗ T 3)

and T 6 = 1√
2
(T 1 ⊗ T 3 + T 3 ⊗ T 1). In this basis, the matrix f(p) takes the form

f0(p) =
6∑

m=1

fm(p)Tm. (3.55)

Under the action of G by the representation S2(ρ), the components f1(p) and
f2(p) do not change. The vectors (f3(p), f4(p))� and (f5(p), f6(p))� rotate
and/or reflect according to the representation Eg. The next step is to calculate
the matrix entries of this representation.

Unfortunately, Altmann & Herzig (1994, Table 69.7) contains matrix entries of
the irreducible unitary representation Eg. Our task is to find a unitary matrix A
such that all matrices AEg(g)A−1, g ∈ G, have real-valued entries. Any unitary
2 × 2 matrix A has the form αA′, where |α| = 1 and A′ ∈ SU(2). The matrices
with different values of α give the same value of AEg(g)A−1, therefore we can
consider only the case of A ∈ SU(2). Let

A =
(
α β

−β α

)
with |α|2 + β2 = 1. Put g = C+

31. By Altmann & Herzig (1994, Table 69.7),

Eg(C+
31) =

(
η 0
0 η

)
, η = −1

2
+

√
3

2
i.

It is easy to check that the matrix AEg(C+
31)A

−1 has real-valued entries if and
only if β = 1√

2
eiψ and α = ±iβ. Put g = C+

4x. By Altmann & Herzig (1994,
Table 69.7),

Eg(C+
4x) =

(
0 η

η 0

)
.

Again, it is easy to check that the matrix AEg(C+
4x)A

−1 has real-valued entries
if and only if either β = 1√

2
or β = i√

2
. We have four possibilities, and we choose

the values β = 1√
2

and α = iβ.
By Altmann & Herzig (1994, Table 69.7), the unitary representation Eg has

six different values. The inverse images of these values are as follows:

G1 = {E,C2x, C2y, C2z, i, σx, σy, σz},
G2 = {C+

31, C
+
32, C

+
33, C

+
34, S

−
61, S

−
62, S

−
63, S

−
64},

G3 = {C−
31, C

−
32, C

−
33, C

−
34, S

+
61, S

+
62, S

+
63, S

+
64},

G4 = {C+
4x, C

−
4x, C

′
2d, C

′
2f , S

−
4x, S

+
4x, σd4, σd6},

G5 = {C+
4y, C

−
4y, C

′
2c, C

′
2e, S

−
4y, S

+
4y, σd3, σd5},

G6 = {C+
4z, C

−
4z, C

′
2a, C

′
2b, S

−
4z, S

+
4z, σd1, σd2}.
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Calculating the matrix entries of the matrices AEg(g)A−1, we obtain the follow-
ing result. The representation Eg maps all elements of G1 to the identity matrix,
all elements of G2 to the matrix 1

2

( −1
√

3

−
√

3 −1

)
, all elements of G3 to the matrix

1
2

(−1 −
√

3√
3 −1

)
, all elements of G4 to the matrix 1

2

(√
3 1

1 −
√

3

)
, all elements of G5 to

the matrix 1
2

(−√
3 1

1
√

3

)
and all elements of G6 to the matrix

(
0 −1
−1 0

)
.

The spherical Bessel function j(p,y − x) can be written in the form

j(p,y − x) =
1
48

6∑
n=1

∑
g∈Gn

ei(gp,y−x).

Denote the inner sum by jn(p,y − x). To calculate these functions, we need
to know the matrix elements of the representation T1u of the group G. Again,
Altmann & Herzig (1994, Table 69.7) contains matrix entries of the irreducible
unitary representation T1u. Fortunately, Altmann & Herzig (1994, Table 71.1)
gives the values of the Euler angles of each element g ∈ G. Using these values, it is
straightforward to calculate the matrix element of the orthogonal representation
T1u. Calculations of the functions jn(p,y − x) gives

j1(p,z) = 8 cos(p1z1) cos(p2z2) cos(p3z3),

j2(p,z) = 8 cos(p1z2) cos(p2z3) cos(p3z1),

j3(p,z) = 8 cos(p1z3) cos(p2z1) cos(p3z2),

j4(p,z) = 8 cos(p1z1) cos(p2z3) cos(p3z2),

j5(p,z) = 8 cos(p1z3) cos(p2z1) cos(p3z1),

j6(p,z) = 8 cos(p1z2) cos(p2z1) cos(p3z3).

Denote by fn0 (p) the matrix (3.55), where the vector (f3(p), f4(p))�

(resp. (f5(p), f6(p))�) is replaced with the vector Eg(h)(f3(p), f4(p))� (resp.
Eg(h)(f5(p), f6(p))�), h ∈ Gn. The contribution of the principal stratum
(R̂3/O×Zc2)7 to the spectral expansion of the two-point correlation tensor takes
the form

1
6

6∑
n=1

∫
(R̂3/O×Zc

2)7

jn(p,z)fn0 (p) dΦ(p).

It remains to calculate the contributions of the rest of strata.
The stationary subgroups of the strata are given in (3.36). The restriction of

the trivial components 2A1g of the representation S2(ρ) to any of them is trivial.
We start to study the restrictions of the non-trivial components 2Eg.

Consider the group H4 = Z−
2 (σx). Under Eg, both elements of this group

are mapping to the identity matrix. In other words, the restriction of Eg to H4

is trivial. The contribution of the stratum (R̂3/O × Zc2)4 is similar to that of
(R̂3/O × Zc2)7.

Next, consider the groups H3 and H6. The matrices of H3 are those matrices
of the orthogonal representation T1u of the group G that fix the vector (0, 1, 1)�.
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They are E, σx, σd4 and C ′
2f . Under Eg, two of them map to the identity matrix

and two others to the matrix 1
2

(√
3 1

1 −
√

3

)
. The matrices of H6 are those matrices

of the orthogonal representation T1u of the group G that fix the vector (1, 2, 2)�.
They are E and σd4. Under Eg, they map to the same two matrices. The former
matrix fix all vectors, while the latter matrix fixes the vectors (f3(p), f4(p))�

(resp. (f5(p), f6(p))�) that satisfy the condition

(
√

3 − 2)f3(p) + f4(p) = 0 (3.56)

(resp. (
√

3 − 2)f5(p) + f6(p) = 0). (3.57)

Denote by C1 the convex compact set of all symmetric 3×3 non-negative-definite
matrices (3.55) satisfying (3.56) and (3.57). Let the matrix f1(p) takes val-
ues in C1 and let fn1 (p) be the matrix f1(p), where the vector (f3(p), f4(p))�

(resp. (f5(p), f6(p))�) is replaced with the vector Eg(f3(p), f4(p))� (resp.
Eg(f5(p), f6(p))�), g ∈ Gn. The contribution of the strata (R̂3/O × Zc2)3 and
(R̂3/O × Zc2)6 becomes

1
6

6∑
n=1

∫
(R̂3/O×Zc

2)3,6

jn(p,z)fn1 (p) dΦ(p).

Next, consider the groups H1 and H5. The matrices of H1 are those matrices
of the orthogonal representation T1u of the group G that fix the vector (0, 1, 0)�.
They are E, σx, σy, C2z, C+

4z, C
−
4z, σd1 and σd2. Four of them belong to the

set G1. The representation Eg maps them to the identity matrix. Four others
belong to the set G6 and map to the matrix

(
0 −1
−1 0

)
. The matrices of H5 are

those matrices of the orthogonal representation T1u of the group G that fix the
vector (1, 2, 1)�. They are E and σd1. Under Eg, they map to the same two
matrices. The former matrix fix all vectors, while the latter matrix fixes the
vectors (f3(p), f4(p))� (resp. (f5(p), f6(p))�) that satisfy the condition

f3(p) + f4(p) = 0 (3.58)

(resp. f5(p) + f6(p) = 0). (3.59)

Denote by C2 the convex compact set of all symmetric 3×3 non-negative-definite
matrices (3.55) satisfying (3.58) and (3.59). Let the matrix f2(p) takes val-
ues in C1 and let fn2 (p) be the matrix f2(p), where the vector (f3(p), f4(p))�

(resp. (f5(p), f6(p))�) is replaced with the vector Eg(f3(p), f4(p))� (resp.
Eg(f5(p), f6(p))�), g ∈ Gn. The contribution of the strata (R̂3/O × Zc2)1 and
(R̂3/O × Zc2)5 becomes

1
6

6∑
n=1

∫
(R̂3/O×Zc

2)1,5

jn(p,z)fn2 (p) dΦ(p).

Finally, the restrictions of the representation Eg to the stationary subgroups
H0 and H2 are two-dimensional irreducible non-trivial representations. The
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corresponding convex compact set C3 is the set of all symmetric 3 × 3 non-
negative-definite matrices (3.55) satisfying fm(p) = 0 for 3 ≤ m ≤ 6. Under
S2(ρ), a matrix f3(p) ∈ C3 does not change. The contribution of the strata
(R̂3/O × Zc2)0 and (R̂3/O × Zc2)2 becomes

1
6

6∑
n=1

∫
(R̂3/O×Zc

2)0,2

jn(p,z)f3(p) dΦ(p).

Note that the set C3 is the interval with extreme points T 1 and 1√
2
T 2. Then we

have

f3(p) = C1(p)T 1 + C2(p)
1√
2
T 2,

where C1(p) and C2(p) are the barycentric coordinates of the point f3(p). Denote

dΦq(p) = Cq(p) dΦ(p), q = 1, 2.

The above contribution takes the form

1
6

6∑
n=1

∫
(R̂3/O×Zc

2)0,2

jn(p,z) dΦ1(p)T 1 +
1
6

6∑
n=1

∫
(R̂3/O×Zc

2)0,2

jn(p,z) dΦ2(p)
1√
2
T 2.

Combining everything together, we obtain:

Theorem 22. The one-point correlation tensor of a homogeneous and
(O × Zc2, A1g ⊕ Eg)-isotropic random field E(x) is

〈E(x) = CT 2, C ∈ R. (3.60)

Its two-point correlation tensor has the form

〈E(x), E(y)〉 =
1
6

6∑
n=1

∫
(R̂3/O×Zc

2)4,7

jn(p,z)fn0 (p) dΦ(p)

+
1
6

6∑
n=1

∫
(R̂3/O×Zc

2)3,6

jn(p,z)fn1 (p) dΦ(p)

+
1
6

6∑
n=1

∫
(R̂3/O×Zc

2)1,5

jn(p,z)fn2 (p) dΦ(p)

+
1
6

6∑
n=1

∫
(R̂3/O×Zc

2)0,2

jn(p,z) dΦ1(p)T 1

+
1
6

6∑
n=1

∫
(R̂3/O×Zc

2)0,2

jn(p,z) dΦ2(p)
1√
2
T 2.
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The field has the form

E(x) = CT 2 +
1√
6

6∑
n=1

8∑
k=1

∫
(R̂3/O×Zc

2)4,7

jnk(p,z) dZnk,0(p)

+
1√
6

6∑
n=1

8∑
k=1

∫
(R̂3/O×Zc

2)3,6

jnk(p,z) dZnk,1(p)

+
1√
6

6∑
n=1

8∑
k=1

∫
(R̂3/O×Zc

2)1,5

jnk(p,z) dZnk,2(p)

+
1√
6

6∑
n=1

8∑
k=1

∫
(R̂3/O×Zc

2)0,2

jnk(p,z) dZnk,3(p)

+
1√
6

6∑
n=1

8∑
k=1

∫
(R̂3/O×Zc

2)0,2

jnk(p,z) dZnk,4(p),

where j1k(p,z) are eight different combinations of sines and cosines of p1z1, p2z2
and p3z3, similarly for j2k(p,z),. . . , j6k(p,z), and where Znk,l(p), 0 ≤ l ≤ 4,
are centred uncorrelated random measures taking values in the linear space of
3 × 3 diagonal matrices and having the following control measures.

E[Znk,l(A) ⊗ Znk,l(B)] =
∫
A∩B

fl(p) dΦ(p), 0 ≤ l ≤ 2,

E[Znk,3(A) ⊗ Znk,3(B)] = Φ(A ∩B)T 1,

E[Znk,4(A) ⊗ Znk,4(B)] =
1√
2
Φ(A ∩B)T 2.

Proof. The representation ρ = A1g ⊕Eg has one trivial component acting in the
one-dimensional space generated by the tensor T 2. Equation (3.60) follows. The
last part follows from Karhunen’s theorem.

The two remaining cases, G = D4 ×Zc2 and G = T ×Zc2, are similar and may
be left to the reader.

The fixed-point space of G2 is the one-dimensional space V0 generated by the
identity matrix I. The basis in this space is given by T = 1√

3
I. The representation

ρ is trivial, therefore the correlation tensors of the corresponding random field
are given by Theorem 14. To obtain the spectral expansion, we have to multiply
the right-hand side of expansion (3.40) by T .

The fixed point set of G1 is the two-dimensional space V1 of 3 × 3 diagonal
matrices X with X11 = X33. The representation ρ is ρ = 2ρ+⊗̂Ag, the direct
sum of two copies of the trivial representation of the group G = H1. Choose the
basis in V1 as follows:

T 1 =
1√
2

⎛⎝1 0 0
0 0 0
0 0 1

⎞⎠, T 2 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠.
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Now we explain how we obtained these results. First, consider the case of
rank 2. A natural orthonormal basis of the space S2(R3) of symmetric 3 × 3
matrices with real entries contains the following six matrices: the only non-
zero entry of three of them is located on the main diagonal and is equal to 1,
the remaining three matrices have non-zero elements aij = −aji = 1/

√
2 for

1 ≤ i < j ≤ 3. Another basis consists of the Godunov–Gordienko matrices g0
0[1,1]

and gn2[1,1], −2 ≤ n ≤ 2.
Consider the symmetry class [H1] = [O(2) × Zc2]. The restriction of the rep-

resentation ρ1 of the group O(3) to O(2) × Zc2 is ρ1⊗̂Au ⊕ ρ+⊗̂Au, where Au is
the non-trivial representation of the group Zc2. The symmetric tensor square of
this representation contains two copies of the trivial representation: the first one
comes from the tensor square of the component ρ1⊗̂Au, while the second one
comes from that of the component ρ0⊗̂Au. The trivial component of the tensor
square is always realised in the one-dimensional space generated by the identity
matrix, hence the basis matrices are

T 1 =
1√
2

⎛⎝1 0 0
0 0 0
0 0 1

⎞⎠, T 2 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠.
Similarly, the restriction of the representation ρ1 of the group O(3) to D2×Zc2

is the direct sum B1u ⊕ B2u ⊕ B3u, see Altmann & Herzig (1994, Table 31.10).
The symmetric tensor square of the above direct sum contains three copies of
the trivial representation of the group D2 × Zc2, see Altmann & Herzig (1994,
Table 31.10). It follows that the space V is the space of diagonal matrices.

By Table 2.1, the normaliser of the groupD2×Zc2 is the group O×Zc2. It follows,
that for any groupG lying between these two, the space V is an invariant subspace
of the representation g �→ S2(g). As an example, we calculate the structure of
the restriction ρ of the above representation of the group G = D4 × Zc2 to the
space V.

The restriction of the representation ρ1 of the group O(3) to D4 × Zc2 is the
direct sum A2u ⊕Eu, see Altmann & Herzig (1994, Table 33.10). Its symmetric
tensor square contains a copy of the trivial representation A1g inside the tensor
square A⊗2

2u , and another copy inside the tensor square E⊗2
u . By Altmann &

Herzig (1994, Table 33.10), the remaining component of ρ may be either B1g or
B2g, and it acts in the one-dimensional space generated by the matrix

T 3 =
1√
2

⎛⎝1 0 0
0 0 0
0 0 −1

⎞⎠.
Note that we cannot use the tables of the Clebsch–Gordan coefficients of the
above cited book, because we use a different basis. To overcome this difficulty,
we choose an element of the group D4×Zc2, on which the representations B1g and
B2g take different values, say C ′

21, and calculate the action of the linear operator
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S2(A2u ⊕ Eu)(C ′
21) on the matrix T 3. To do that, we need to find the matrix

entries of the representation A2u ⊕ Eu. Note that they differ from those given
in Altmann & Herzig (1994). Nevertheless, we may calculate them by using the
Euler angles of the elements of the group D4 × Zc2 given in Altmann & Herzig
(1994, Table 33.10). In particular, we have

(A2u ⊕ Eu)(C ′
21) =

⎛⎝1 0 0
0 −1 0
0 0 −1

⎞⎠
and

S2(A2u ⊕ Eu)(C ′
21)T

3 = (A2u ⊕ Eu)(C ′
21)T

3((A2u ⊕ Eu)(C ′
21))

−1 = T 3,

that is, the tensor square S2(A2u⊕Eu) acts trivially on T 3. It is the representation
B1g that maps C ′

21 to 1. Therefore, we have ρ = 2A1g ⊕ B1g. The structure of
the representation ρ for the remaining groups is calculated similarly.

In the case of rank 3, the space S2(R3) ⊗ R3 carries the orthogonal represen-
tation (ρ0 ⊕ ρ2)⊗ ρ1 of the group O(3). This representation is equivalent to the
direct sum 2ρ1 ⊕ ρ2 ⊕ ρ3. As usual, the bases in the irreducible components are
calculated by means of the Godunov–Gordienko coefficients as follows.

T ρ1,1,lijk =
1√
3
δijδkl,

T ρ1,2,lijk =
2∑

m=−2

1∑
n=−1

g
l[m,n]
1[2,1] g

m[i,j]
2[1,1] δkn =

2∑
m=−2

g
l[m,k]
1[2,1] g

m[i,j]
2[1,1] ,

T ρ2,lijk =
2∑

m=−2

1∑
n=−1

g
l[m,n]
2[2,1] g

m[i,j]
2[1,1] δkn =

2∑
m=−2

g
l[m,k]
2[2,1] g

m[i,j]
2[1,1] ,

T ρ3,lijk =
2∑

m=−2

1∑
n=−1

g
l[m,n]
3[2,1] g

m[i,j]
2[1,1] δkn =

2∑
m=−2

g
l[m,k]
3[2,1] g

m[i,j]
2[1,1] .

(3.61)

The basis tensors in the spaces V are calculated as explained above. We express
all of them in terms of the basis (3.61) using MATLAB Symbolic Math Toolbox.
The results are given in the arxiv preprint.

In the case of rank 4, the space S2(S2(R3)) carries the orthogonal represen-
tation S2(S2(ρ1)) of the group O(3). This representation is equivalent to the
direct sum 2ρ0 ⊕ 2ρ2 ⊕ ρ4. As usual, the bases in the irreducible components are
calculated by means of the Godunov–Gordienko coefficients as follows.

T 0,1
ijkl =

1
3
δijδkl,

T 0,2
ijkl =

1√
5

2∑
n=−2

g
n[i,j]
2[1,1]g

n[k,l]
2[1,1] ,

T 2,1,m
ijkl =

1√
6
(δijg

m[k,l]
2[1,1] + δklg

m[i,j]
2[1,1] ), −2 ≤ m ≤ 2, (3.62)
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T 2,2,m
ijkl =

2∑
n,q=−2

g
m[n,q]
2[2,2] g

n[i,j]
2[1,1]g

q[k,l]
2[1,1], −2 ≤ m ≤ 2,

T 4,1,m
ijkl =

4∑
n,q=−4

g
m[n,q]
4[2,2] g

n[i,j]
2[1,1]g

q[k,l]
2[1,1], −4 ≤ m ≤ 4.

The basis tensors in the spaces V are calculated as explained above. We express
all of them in terms of the basis (3.62) using MATLAB Symbolic Math Toolbox.
The results are given in Table 3 of the arxiv preprint.

Theorem 23. The two-point correlation tensor of a homogeneous and (O(2) ×
Zc2, 2ρ

+⊗̂Ag)-isotropic random field has the form

〈E(x), E(y)〉 = 2
∫ ∞

0

∫ ∞

0

J0

(
λ
√

(y1 − x1)2 + (y2 − x2)2
)

× cos(p3(y3 − x3))f(λ, p3) dΦ(λ, p3),

where Φ is a finite Borel measure on [0,∞)2, and f(λ, p3) is a Φ-equivalence
class of measurable functions on [0,∞)2 with values in the compact set of all
non-negative-definite linear operators in the space V1 with unit trace. The field
has the form

E(r, ϕ, z) = C1T
1 + C2T

2

+
2∑

m=1

∫ ∞

0

∫ ∞

0

J0(λr)[cos(p3z) dZ01m(λ, p3)TA,1

+ sin(p3z) dZ02m(λ, p3)TA,2] +
√

2
∞∑
�=1

2∑
m=1

∫ ∞

0

∫ ∞

0

J�(λr)

× [cos(p3z) cos(�ϕ) dZ�1m(λ, p3)TA,m

+ cos(p3z) sin(�ϕ) dZ�2m(λ, p3)TA,m

+ sin(p3z) cos(�ϕ) dZ�3m(λ, p3)TA,m

+ sin(p3z) sin(�ϕ) dZ�4m(λ, p3)TA,m],

where C1 and C2 are arbitrary real numbers, and Z�i = (Z�i1, Z�i2)� are cen-
tred V1-valued uncorrelated random measures on [0,∞)2 with control measure
f(λ, p3) dΦ(λ, p3).

Proof. It is similar to that of Theorem 16 and may be left to the reader.

Lomakin (1964) gave a partial solution to the (O(3),S2(g))-problem. Let
ρ = S2(ρ1).
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Theorem 24. The two-point correlation tensor of a homogeneous and
(O(3),S2(g))-isotropic random field is

Rijk�(z) := 〈E(x), E(y)〉ijk� =
5∑

m=1

Am(‖z‖)Lmijk�(z), (3.63)

where the functions Lmijk�(z) are given by (2.39), (2.42) and (2.43).

Proof. By Theorem 7, it remains to prove that (2.39), (2.42) and (2.43) are the
basic covariant tensors of the representations S2(S2(g)) and g. We proved this in
Examples 21 and 22.

Theorem 25 (A partial solution to the (O(3),S2(g))-problem). The one-point
correlation tensor of the homogeneous and (O(3),S2(g))-isotropic random field is

〈T (x)〉ij = Cδij , C ∈ R,

while its two-point correlation tensor has the spectral expansion

Bijkl(z) =
3∑

n=1

∫ ∞

0

5∑
q=1

Nnq(λ, ρ)L
q
ijkl(z) dΦn(λ), (3.64)

where the functions Nnq(λ, ρ) are given in Table 3.1, Φn(λ) are three finite mea-
sures on [0,∞) with the following restriction: the atom Φ3({0}) occupies at least
2/7 of the sum of all three atoms, while the rest is divided between Φ1({0})
and Φ2({0}) in the proportion 1 : 3

2 . In Table 3.1 v(λ) = (v1(λ), v2(λ))� is a
Φ3-equivalence class of measurable functions taking values in the closed elliptic
region 4(v1(λ) − 1/2)2 + 8v2

2(λ) ≤ 1.

Proof. As we already know, the basis of the space V = S2(R3) is formed by the
matrices

T 0,1
ij =

1√
3
δij , T 2,1,q

ij = gq2[1,1], −2 ≤ q ≤ 2.

We have m′
0 = 1, and

〈T (x)〉 = Cδij , C ∈ R

by (3.14).
The representation S2(ρ1) is

S2(ρ1) = ρ0 ⊕ ρ2.

The representation acting in the space V ⊗ V is the direct sum of the following
four representations:

(ρ0 ⊕ ρ2) ⊗ (ρ0 ⊕ ρ2) = ρ0 ⊗ ρ0 ⊕ ρ0 ⊗ ρ2

⊕ ρ2 ⊗ ρ0 ⊕ ρ2 ⊗ ρ2.
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Table 3.1 The functions Nnq(λ, ρ) in (O(3),S2(ρ1)-problem

n q Nnq(λ, ρ)

1 1 − 2
15

j0(λρ) − 4
21

j2(λρ) − 2
35

j4(λρ)

1 2 1
5
j0(λρ) + 1

7
j2(λρ) − 2

35
j4(λρ)

1 3 − 3
14

j2(λρ) + 2
7
j4(λρ)

1 4 2
7
(j2(λρ) + j4(λρ))

1 5 −2j4(λρ)

2 1 − 4
45

j0(λρ) + 16
63

j2(λρ) + 1
105

j4(λρ)

2 2 2
15

j0(λρ) − 4
21

j2(λρ) + 1
105

j4(λρ)

2 3 2
7
j2(λρ) − 1

21
j4(λρ)

2 4 − 8
21

j2(λρ) − 1
21

j4(λρ)

2 5 1
3
j4(λρ)

3 1
2v1(λ)+8v2(λ)+1

15
j0(λρ) +

−8v1(λ)+10v2(λ)+2
21

j2(λρ) +
−v1(λ)−4v2(λ)+2

70
j4(λρ)

3 2
−v1(λ)−4v2(λ)+2

30
j0(λρ) +

−v1(λ)−4v2(λ)+2
21

j2(λρ) +
(−v1(λ)−4v2(λ)+2)

70
j4(λρ)

3 3
v1(λ)+4v2(λ)−2

14
(j2(λρ) + j4(λρ))

3 4
4v1(λ)−5v2(λ)−1

7
j2(λρ) +

v1(λ)+4v2(λ)−2
14

j4(λρ)

3 5
−v1(λ)−4v2(λ)+2

2
j4(λρ)

The basis rank 4 tensor of the first representation is

T 0,1
ijkl = T 0,1

ij ⊗ T 0,1
kl =

1
3
δijδkl. (3.65)

This representation is an irreducible component of S2(S2(ρ∗0)).
The basis rank 4 tensors of the second representation are T 0,1

ij ⊗ T 2,1,s
kl , while

those of the third representation are T 2,1,s
ij ⊗T 0,1

kl . The linear space generated by
the tensors

T 2,1,q
ijkl =

1√
2
(T 0,1
ij ⊗ T 2,1,q

kl + T 2,1,q
ij ⊗ T 0,1

kl ) =
1√
6
(δijg

q[k,l]
2[1,1] + δklg

q[i,j]
2[1,1]) (3.66)

carries a copy of the representation ρ2 that is an irreducible component of
S2(S2(ρ∗0)), while the space generated by the tensors

1√
2
(T 0,1
ij ⊗ T 2,1,q

kl − T 2,1,q
ij ⊗ T 0,1

kl )

carries another copy of the representation ρ2 that is an irreducible component
of Λ2(S2(ρ1)).

The fourth representation is reducible:

ρ2 ⊗ ρ2 = ρ0 ⊕ ρ∗1 ⊕ ρ2 ⊕ ρ∗3 ⊕ ρ4.
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The components ρ∗1 and ρ∗3 are irreducible components of Λ2(S2(ρ1)). The basis
rank 4 tensor in the space of the representation ρ0 is

T 0,2
ijkl =

2∑
m,n=−2

g
0[m,n]
0[2,2] T

2,1,m
ij ⊗ T 2,1,n

kl =
1√
5

2∑
m=−2

g
m[i,j]
2[1,1] g

m[k,l]
2[1,1] , (3.67)

the basis rank 4 tensors in the space of the representation ρ2 are

T 2,2,q
ijkl =

2∑
m,n=−2

g
q[m,n]
2[2,2] T

2,1,m
ij ⊗ T 2,1,n

kl =
2∑

m,n=−2

g
q[m,n]
2[2,2] g

m[i,j]
2[1,1] g

n[k,l]
2[1,1] , (3.68)

and the basis rank 4 tensors in the space of the representation ρ4 are

T 4,1,q
ijkl =

2∑
m,n=−2

g
q[m,n]
4[2,2] T

2,1,m
ij ⊗ T 2,1,n

kl =
2∑

m,n=−2

g
q[m,n]
4[2,2] g

m[i,j]
2[1,1] g

n[k,l]
2[1,1] . (3.69)

By (3.28) we have

M2n,m
ijkl (p) =

2n∑
q=−2n

T 2n,m,q
ijkl ρ2n

q0 (p/‖p‖).

The function f(λ) takes the form

fijkl(λ) = f0,1(λ)T 0,1
ijkl + f0,2(λ)T 0,2

ijkl + f2,1(λ)T 2,1,0
ijkl + f2,2(λ)T 2,2,0

ijkl + f4,1(λ)T 4,1,0
ijkl

with f2,1(0) = f2,2(0) = f4,1(0) = 0. When λ = 0, we obtain

fijkl(0) = f0,1(0)T 0,1
ijkl + f0,2(0)T 0,2

ijkl. (3.70)

To simplify this expression, use (2.17) with ρ = σ = 1 and g = I. We obtain

δikδjl =
1
3
δijδkl +

1∑
n=−1

g
n[i,j]
1[1,1]g

n[k,l]
1[1,1] +

√
5T 0,2

ijkl.

Interchange k and l and use the fact that the matrix gn[k,l]
1[1,1] is skew-symmetric.

We have

δilδjk =
1
3
δijδkl −

1∑
n=−1

g
n[i,j]
1[1,1]g

n[k,l]
1[1,1] +

√
5T 0,2

ijkl.

Adding the two last displays yields

2Iijkl =
2
3
δijδkl + 2

√
5T 0,2

ijkl,

or

T 0,2
ijkl = − 1

3
√

5
δijδkl +

1√
5
Iijkl. (3.71)

Equation 3.70 takes the form

fijkl(0) =
(

1
3
f0,1(0) − 1

3
√

5
f0,2(0)

)
δijδkl +

1√
5
f0,2(0)Iijkl.
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We represent the symmetric tensor fijkl(λ) in the Voigt form as a symmetric
6 × 6 matrix, where Voigt indexes are numbered in the following order: −1 − 1,
00, 11, 01, −11, −10. For example, f−1−101 simplifies to f14, and so on. The only
non-zero elements of the symmetric matrix fij(0) lying on and over its main
diagonal are as follows:

f11(0) = f22(0) = f33(0) =
1
3
f0,1(0) +

2
3
√

5
f0,2(0),

f12(0) = f13(0) = f23(0) =
1
3
f0,1(0) − 1

3
√

5
f0,2(0),

f44(0) = f55(0) = h66(0) =
1

2
√

5
f0,2(0).

It is not difficult to prove by direct calculation that the above matrix is non-
negative-definite with unit trace if and only if f0,1(0) and f0,2(0) are non-negative
real numbers with

f0,1(0) +
7

2
√

5
f0,2(0) = 1. (3.72)

In other words, the convex compact set C1 is an interval with two extreme
points. The first extreme point is the 6×6 matrix that corresponds to the values
f0,1(0) = 0, f0,2(0) = 2

√
5

7 and has the entries

f11(0) = f22(0) = f33(0) =
4
21
,

f12(0) = f13(0) = f23(0) = − 2
21
,

f44(0) = f55(0) = h66(0) =
1
7
,

while the second extreme point is the 6×6 matrix that corresponds to the values
f0,1(0) = 1, f0,2(0) = 0 and has the non-zero entries

f11(0) = f22(0) = f33(0) = f12(0) = f13(0) = f23(0) =
1
3
.

Using the algorithm described in Example 17, we calculate the non-zero ele-
ments of the symmetric matrix fij(λ) with λ > 0 lying on and over its main
diagonal as follows:

f11(λ) =
1
3
f1(λ) +

2
3
√

5
f2(λ) − 1

3
f3(λ) −

√
2

3
√

7
f4(λ) +

3
2
√

70
f5(λ),

f12(λ) =
1
3
f1(λ) − 1

3
√

5
f2(λ) +

1
6
f3(λ) −

√
2

3
√

7
f4(λ) −

√
2√
35
f5(λ),

f13(λ) =
1
3
f1(λ) − 1

3
√

5
f2(λ) − 1

3
f3(λ) +

2
√

2
3
√

7
f4(λ) +

1
2
√

70
f5(λ),

f22(λ) =
1
3
f1(λ) +

2
3
√

5
f2(λ) +

2
3
f3(λ) +

2
√

2
3
√

7
f4(λ) +

2
√

2√
35
f5(λ),
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f44(λ) = f66(λ) =
1

2
√

5
f2(λ) +

1
2
√

14
f4(λ) −

√
2√
35
f5(λ),

f55(λ) =
1

2
√

5
f2(λ) − 1√

14
f4(λ) +

1
2
√

70
f5(λ)

(3.73)

with f33(λ) = f11(λ) and f23(λ) = f12(λ). Here we introduce notation fi,j(λ) =
fi+j(λ). Note that f13(λ) = f11(λ) − 2f55(λ), while f12(λ) is not a linear
combination of the diagonal elements of the matrix fij(λ).

Introduce the following notation:

u1(λ) := 2f44(λ), u2(λ) := 3f55(λ), u3(λ) := 2(f11(λ) − f55(λ)),

u4(λ) := f22(λ), u5(λ) := f12(λ). (3.74)

Direct calculations show that the matrix f(λ) is non-negative-definite with unit
trace if and only if ui(λ) ≥ 0, 1 ≤ i ≤ 4, u1(λ) + · · · + u4(λ) = 1 and |u5(λ)| ≤√
u3(λ)u4(λ)/2. It follows from (3.73) and (3.74) that

u1(0) =
1√
5
f2(0), u2(0) =

3
2
√

5
f2(0), u3(0) + u4(0) = 1 −

√
5

2
f2(0). (3.75)

Define

v1(λ) =
u3(λ)

u3(λ) + u4(λ)
, v2(λ) =

u5(λ)
u3(λ) + u4(λ)

, (3.76)

and v1(λ) = 1/2, v2(λ) = 0 if the denominator is equal to 0. We see that the set
of extreme points of the set C0 contains three connected components: the matrix
D1 with non-zero entries D1

44 = D1
66 = 1/2, the matrix D2 with non-zero entries

D2
11 = D2

33 = D2
55 = 1/3 and D2

13 = D2
31 = −1/3, and the symmetric matrices

D(λ) with non-zero entries on and over the main diagonal as follows

D11(λ) = D33(λ) = D13(λ) = v1(λ)/2, D22(λ) = 1 − v1(λ),

D12(λ) = D23(λ) = v2(λ)

lying on the ellipse

u1(λ) = u2(λ) = 0, 4(v1(λ) − 1/2)2 + 8v2
2(λ) = 1. (3.77)

The matrix f(λ) takes the form

f(λ) = u1(λ)D1 + u2(λ)D2 + (u3(λ) + u4(λ))D(λ),

where D(λ) lies in the elliptic region 4(v1(λ) − 1/2)2 + 8v2
2(λ) ≤ 1.

The functions fi(λ) are expressed in terms of ui(λ) as follows:

f1(λ) =
2
3
u3(λ) +

1
3
u4(λ) +

4
3
u5(λ),

f2(λ) =
2√
5
u1(λ) +

4
3
√

5
u2(λ) +

1
3
√

5
u3(λ) +

2
3
√

5
u4(λ) − 4

3
√

5
u5(λ),

f3(λ) = −2
3
u3(λ) +

2
3
u4(λ) +

2
3
u5(λ),
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f4(λ) =
√

2√
7
u1(λ) − 4

√
2

3
√

7
u2(λ) +

√
2

3
√

7
u3(λ) +

2
√

2
3
√

7
u4(λ) − 4

√
2

3
√

7
u5(λ),

f5(λ) = −4
√

2√
35
u1(λ) +

2
√

2
3
√

35
u2(λ) +

√
2√
35
u3(λ) +

2
√

2√
35
u4(λ) − 4

√
2√

35
u5(λ).

(3.78)

Denote Mn+m
ijkl (p) = M2n,m

ijkl (p). We have

fijkl(p) = M1
ijkl(p)f1(λ) + · · · +M5

ijkl(p)f5(λ). (3.79)

Using (3.76) and (3.78), we obtain

fijkl(p) =

[
2√
5
M2
ijkl(p) +

√
2√
7
M4
ijll(p) −

4
√

2√
35
M5
ijkl(p)

]
u1(λ)

+

[
4

3
√

5
M2
ijkl(p) −

4
√

2
3
√

7
M4
ijkl(p) +

2
√

2
3
√

35
M5
ijkl(p)

]
u2(λ)

+

[
v1(λ) + 4v2(λ) + 1

3
M1
ijkl(p) +

−v1(λ) − 4v2(λ) + 2
3
√

5
M2
ijkl(p)

+
−4v1(λ) + 2v2(λ) + 2

3
M3
ijkl(p) +

√
2(−v1(λ) − 4v2(λ) + 2)

3
√

7
M4
ijkl(p)

+
√

2(−v1(λ) − 4v2(λ) + 2)√
35

M5
ijkl(p)

]
(u3(λ) + u4(λ)).

Substitute this formula in (3.27), write the result in terms of real-valued
spherical harmonics (2.55), and use the Rayleigh expansion (2.62). We obtain

Rijkl(z) =
∫ ∞

0

[
2√
5
j0(λρ)M2

ijkl(z) −
√

2√
7
j2(λρ)M4

ijkl(z) −
4
√

2√
35
j4(λρ)M5

ijkl(z)

]

× dΦ1(λ) +
∫ ∞

0

[
4

3
√

5
j0(λρ)M2

ijkl(z) +
4
√

2
3
√

7
j2(λρ)M4

ijkl(z)

+
2
√

2
3
√

35
j4(λρ)M5

ijkl(z)

]
dΦ2(λ) +

∫ ∞

0

[
v1(λ) + 4v2(λ) + 1

3
j0(λρ)M1

ijkl(z)

+
−v1(λ) − 4v2(λ) + 2

3
√

5
j0(λρ)M2

ijkl(z) −
−4v1(λ) + 2v2(λ) + 2

3
j2(λρ)M3

ijkl(z)

−
√

2(−v1(λ) − 4v2(λ) + 2)
3
√

7
j2(λρ)M4

ijkl(z)

+
√

2(−v1(λ) − 4v2(λ) + 2)√
35

j4(λρ)M5
ijkl(z)

]
dΦ3(λ), (3.80)

where we introduced notation dΦj(λ) = uj(λ) dν(λ), j = 1, 2 and dΦ3(λ) =
(u3(λ) + u4(λ)) dν(λ). It follows from (3.72) that 0 ≤ f2(0) ≤ 2

√
5

7 . Then,
by (3.75)
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2
7
≤ u3(0) + u4(0) ≤ 1.

It follows that the atom Φ3({0}) occupies at least 2/7 of the sum of all three
atoms, while the rest is divided between Φ1({0}) and Φ2({0}) in the proportion
1 : 3

2 .
We would like to express the functions Mq

ijkl(p) in terms of Lqijkl(p). We have

M1
ijkl(p) =

1
3
L1
ijkl(p),

M2
ijkl(p) = − 1

3
√

5
L1
ijkl(p) +

1
2
√

5
L2
ijkl(p),

M3
ijkl(p) = −1

3
L1
ijkl(p) +

1
2
L4
ijkl(p),

M4
ijkl(p) =

2
√

2
3
√

7
L1
ijkl(p) −

1√
14
L2
ijkl(p) +

3
2
√

14
L3
ijkl(p) −

√
2√
7
L4
ijkl(p),

M5
ijkl(p) =

1
2
√

70
L1
ijkl(p) +

1
2
√

70
L2
ijkl(p) −

√
5

2
√

14
L3
ijkl(p)

−
√

5
2
√

14
L4
ijkl(p) +

√
35

2
√

2
L5
ijkl(p), (3.81)

where the first equation is obvious, the second follows from (3.67) and the rest
can be proved by computer calculations. Substitute this equation in (3.80). We
obtain (3.64). Theorem 25 follows.

Introduce the following notation.

bu
′w′kl
uwij,1 = iu−u

′√
(2u+ 1)(2u′ + 1)

(
2
5
g
0[w,w′]
0[u,u′] g

0[0,0]
0[u,u′]

2∑
n=−2

g
n[i,j]
2[1,1]g

n[k,l]
2[1,1]

+
√

2
5
√

7
g
0[0,0]
2[u,u′]

2∑
n,q,t=−2

g
−t[n,q]
2[2,2] g

n[i,j]
2[1,1]g

q[k,l]
2[1,1]g

−t[w,w′]
2[u,u′]

− 4
√

2
3
√

35
g
0[0,0]
4[u,u′]

2∑
n,q=−2

4∑
t=−4

g
−t[n,q]
2[2,2] g

n[i,j]
2[1,1]g

q[k,l]
2[1,1]g

−t[w,w′]
4[u,u′]

)
,

bu
′w′lm
uwij,2 = iu−u

′√
(2u+ 1)(2u′ + 1)

(
4
15
g
0[w,w′]
0[u,u′] g

0[0,0]
0[u,u′]

2∑
n=−2

g
n[i,j]
2[1,1]g

n[k,l]
2[1,1]

− 4
√

2
15
√

7
g
0[0,0]
2[u,u′]

2∑
n,q,t=−2

g
−t[n,q]
2[2,2] g

n[i,j]
2[1,1]g

q[k,l]
2[1,1]g

−t[w,w′]
2[u,u′]

+
2
√

2
27
√

35
g
0[0,0]
4[u,u′]

2∑
n,q=−2

4∑
t=−4

g
−t[n,q]
2[2,2] g

n[i,j]
2[1,1]g

q[k,l]
2[1,1]g

−t[w,w′]
4[u,u′]

)
,
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and

bu
′w′kl
uwij,3(λ) = iu−u

′√
(2u+ 1)(2u′ + 1)

(
v1(λ) + 4v2(λ) + 1

9
δijδlm

× g
0[w,w′]
0[u,u′] g

0[0,0]
0[u,u′] +

−v1(λ) − 4v2(λ) + 2
15

g
0[w,w′]
0[u,u′] g

0[0,0]
0[u,u′]

×
2∑

n=−2

g
n[i,j]
2[1,1]g

n[k,l]
2[1,1] +

−4v1(λ) + 2v2(λ) + 2
15
√

6
g
0[0,0]
2[u,u′]

×
2∑

t=−2

g
−t[w,w′]
2[u,u′]

(
δijg

t[k,l]
2[1,1] + δklg

t[i,j]
2[1,1]

)
+

√
2[−v1(λ) − 4v2(λ) + 2]

15
√

7
g
0[0,0]
2[u,u′]

×
2∑

n,q,t=−2

g
−t[n,q]
2[2,2] g

n[i,j]
2[1,1]g

q[k,l]
2[1,1]g

−t[w,w′]
2[u,u′] +

√
2[−v1(λ) − 4v2(λ) + 2]

9
√

35
g
0[0,0]
4[u,u′]

×
2∑

n,q=−2

4∑
t=−4

g
−t[n,q]
2[2,2] g

n[i,j]
2[1,1]g

q[k,l]
2[1,1]g

−t[w,w′]
4[u,u′]

)
.

Let < be the lexicographic order on quadruples (u,w, i, j), u ≥ 0, −u ≤ w ≤ u,
−1 ≤ i ≤ 1, −1 ≤ j ≤ 1. Let L1, L2 and L3(λ) be infinite lower triangular
matrices from Cholesky factorisation of non-negative-definite matrices bu

′w′kl
uwij,1,

bu
′w′kl
uwij,2 and bu

′w′kl
uwij,3(λ), constructed in Hansen (2010). Finally, let Z1

uwij , Z
2
uwij

and Z3
uwij be the set of centred uncorrelated random measures on [0,∞) with

Φn being the control measure for Znuwij , 1 ≤ n ≤ 3.

Theorem 26 (A complete solution to the (O(3),S2(g))-problem). In the case
of V = S2(R3) and ρ(g) = S2(g), the homogeneous and isotropic random field
T (x) has the form

Tij(r, θ, ϕ) = Cδij + 2
√
π

∞∑
u=0

u∑
w=−u

∫ ∞

0

ju(λr) dZ1′
uwij(λ)Swu (θ, ϕ)

+ 2
√
π

∞∑
u=0

u∑
w=−u

∫ ∞

0

ju(λr) dZ2′
uwij(λ)Swu (θ, ϕ) + 2

√
π

∞∑
u=0

u∑
w=−u

∫ ∞

0

ju(λr)

×
∑

(u′,w′,i′,j′)≤(u,w,i,j)

L3
uwij,u′w′i′j′(λ)dZ3

uwij(λ)Swu (θ, ϕ),

where

Zn
′

uwij(A) =
∑

(u′,w′,i′,j′)�(u,w,i,j)

Lnuwij,u′w′i′j′Z
k
u′w′i′j′(A), (3.82)

with 1 ≤ k ≤ 3 and A ∈ B([0,∞)).

Proof. Similar to that of Theorem 20.
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There is a subset of the set of solutions to the (O(3),S2(g))-problem whose
two-point correlation tensors are described by a formula similar to (3.47). The
idea is as follows. Equation (3.47) does not contain functions vi(λ), because the
set C0 is a simplex. In the (O(3),S2(g))-problem, the set C0 where the function
f(λ) takes its values, is not a simplex. Inscribe a simplex in C0 in such a way that
it contains C1, and allow the function f(λ) to take values only in this simplex.
In such a way, we describe only a subclass of the class of (O(3),S2(g))-isotropic
random fields. That is, we describe only sufficient, but not necessary conditions
for a homogeneous random field to be isotropic. The more the Lebesgue measure
of the inscribed simplex in comparison with that of the set C0, the greater class
of isotropic random fields is described and the closer the sufficient conditions to
the necessary ones.

Theorem 27. A random field with the one-point correlation tensor

〈T (x)〉 = Cδij , C ∈ R,

and two-point correlation tensor

Bijk�(z) =
4∑

n=1

∫ ∞

0

5∑
q=1

Nnq(λ, ρ)L
q
ijk�(z) dΦn(λ), (3.83)

where N3q(λ, ρ) (resp. N4q(λ, ρ)) can be calculated by substituting the values
v1(λ) = 1, v2(λ) = 0 (resp. v1(λ) = v2(λ) = 0) for the last five elements of
the third column of Table 3.1, solving the (O(3),S2(g))-problem. If

4∑
n=1

Φn({0}) = Φ0 > 0,

then

Φ1({0}) = Φ3({0}) = Φ4({0}) =
2
3
Φ2(0). (3.84)

The spectral expansion of such a field takes the form

Tij(r, θ, ϕ) = Cδij + 2
√
π

4∑
n=1

∞∑
u=0

u∑
w=−u

∫ ∞

0

ju(λr) dZn
′

uwij(λ)Swu (θ, ϕ),

where the measures dZn
′

uwij(λ) are determined by (3.82). In (3.82), Ln are infinite
lower triangular matrices from Cholesky factorisation of the matrices bu

′w′�m
uwij,n .

The matrix bu
′w′�m
uwij,3 (resp. bu

′w′�m
uwij,4 ) can be calculated by substituting the above

values of v1(λ) and v2(λ) in the formula that determines bu
′w′�m
uwij,3 (λ).

Proof. Recall that f12(λ) is not a linear combination of the diagonal elements of
the matrix fij(λ). Introduce the following constraint: f12(λ) = 0. Geometrically,
we consider the intersection of the convex compact set C0 with a hyperplane
f12(λ) = 0. It is easy to see that the above intersection is a simplex with
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barycentric coordinates given by the functions ui(λ), 1 ≤ i ≤ 4 from Equa-
tion 3.74. Two of the extreme points of this simplex lie in the ellipse (3.77) and
correspond to the values of v1(λ) and v2(λ) shown in the text of the theorem.
Substituting the above values as indicated, we obtain the expansion (3.83).

It is easy to check that the set C1 intersects with the constructed simplex at
one point with f11(λ) = f22(λ) = f33(λ) = 2

9 and f44(λ) = f55(λ) = f66(λ) =
1
9 . Equation (3.74) gives the barycentric coordinates of this point as u1(λ) =
u3(λ) = u4(λ) = 2

9 and u2(λ) = 1
3 . Equation (3.84) follows. As usual, the last

part is just an application of Kahrunen’s theorem.

Another subset may be described as follows. In order to write down symmetric
rank 4 tensors in a compressed matrix form, consider an orthogonal operator τ
acting from S2(S2(R3)) to S2(R6) as follows:

τfijkl =

⎛⎜⎜⎜⎝
f−1−1−1−1 f−1−100 f−1−111

√
2f−1−1−10

√
2f−1−101

√
2f−1−11−1

f00−1−1 f0000 f0011
√

2f00−10
√

2f0001
√

2f001−1

f11−1−1 f1100 f1111
√

2f11−10
√

2f1101
√

2f111−1√
2f−10−1−1

√
2f−1000

√
2f−1011 2f−10−10 2f−1001 2f−101−1√

2f01−1−1
√

2f0100
√

2f0111 2f01−10 2f0101 2f011−1√
2f1−1−1−1

√
2f1−100

√
2f1−111 2f1−1−10 2f1−101 2f1−11−1

⎞⎟⎟⎟⎠,
see Helnwein (2001, Equation (44)). While proving Theorem 26, we will show
the following. The matrix τfijkl(0) lies in the interval C1 with extreme points
C1 and C2, where the non-zero elements of the symmetric matrix C1 lying on
and over the main diagonal are as follows:

C1
11 = C1

12 = C1
13 = C1

22 = C1
23 = C1

33 =
1
3
,

while those of the matrix C2 are

C2
11 = C2

22 = C2
33 =

2
15
, C2

44 = C2
55 = C2

66 =
1
5
,

C2
12 = C2

13 = C2
23 = − 1

15
.

The matrix τfijkl(λ, 0, 0) with λ > 0 lies in the convex compact set C0. The set of
extreme points of C0 contains three connected components. The first component
is the one-point set {D1} with

D1
44 = D1

66 =
1
2
.

The second component is the one-point set {D2} with

D2
11 = D2

33 =
1
4
, D2

55 =
1
2
, D2

13 = −1
4
.

The third component is the ellipse {Dθ : 0 ≤ θ < 2π } with

Dθ
11 = Dθ

33 = Dθ
13 =

1
2

sin2(θ/2), Dθ
22 = cos2(θ/2),

Dθ
12 = Dθ

23 =
1

2
√

2
sin(θ).
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Choose three points D3, D4, D5 lying on the above ellipse. If we allow the
matrix τfijkl(λ, 0, 0) with λ > 0 to take values in the simplex with vertices Di,
1 ≤ i ≤ 5, then the two-point correlation tensor of the random field ε(x) is
the sum of five integrals. The more the four-dimensional Lebesgue measure of
the simplex in comparison with that of C0, the wider class of random fields is
described.

Note that the simplex should contain the set C1. The matrix C1 lies on the
ellipse and corresponds to the value of θ = 2arcsin(

√
2/3). It follows that one of

the above points, say D3, must be equal to C1. If we choose D4 to correspond
to the value of θ = 2(π − arcsin(

√
2/3)), that is,

D4
11 = D4

33 = D4
13 =

1
6
, D4

22 =
2
3
, D4

12 = D4
23 = −1

3
,

then

C2 =
2
5
(D1 +D2) +

1
5
D4,

and C2 lies in the simplex. Finally, choose D5 to correspond to the value of
θ = π, that is

D5
11 = D5

33 = D5
13 =

1
2
.

The constructed simplex is not the one with maximal possible Lebesgue measure,
but the coefficients in formulas are simple.

Theorem 28. Let E(x) be a random field that describes the stress tensor of a
deformable body. The following conditions are equivalent.

1. The matrix τfijkl(λ, 0, 0) with λ > 0 takes values in the simplex described
above.

2. The correlation tensor of the field has the spectral expansion

〈E(x), E(y)〉 =
5∑

n=1

∫ ∞

0

5∑
q=1

Ñnq(λ, ‖r‖)Lqijkl(r) dΦn(λ),

where the non-zero functions Ñnq(λ, r) are given in Table 3.2, and where
Φn(λ) are five finite measures on [0,∞) with

Φ1({0}) = Φ2({0}) = 2Φ4({0}), Φ5({0}) = 0.

Proof. Similar to that of Theorem 27.

Introduce the following notation:

T 0,1
ijkl =

1
3
δijδkl,

T 0,2
ijkl =

1√
5

2∑
n=−2

g
n[i,j]
2[1,1]g

n[k,l]
2[1,1] ,
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Table 3.2 The functions Ñnq(λ, r)

n q Nnq(λ, r)

1 1 − 1
15

j0(λr) − 2
21

j2(λr) − 1
35

j4(λr)

1 2 1
10

j0(λr) + 1
14

j2(λr) − 1
35

j4(λr)

1 3 − 3
28

j2(λr) + 1
7
j4(λr)

1 4 1
7
j2(λr) + 1

7
j4(λr)

1 5 −j4(λr)

2 1 − 1
15

j0(λr) + 4
21

j2(λr) + 1
140

j4(λr)

2 2 1
10

j0(λr) − 1
7
j2(λr) + 1

140
j4(λr)

2 3 3
14

j2(λr) − 1
28

j4(λr)

2 4 − 2
7
j2(λr) − 1

28
j4(λr)

2 5 1
4
j4(λr)

3 1 1
3
j0(λr)

4 1 − 1
135

j0(λr) − 4
21

j2(λr) + 3
70

j4(λr)

4 2 1
90

j0(λr) + 1
7
j2(λr) + 3

70
j4(λr)

4 3 − 3
14

j2(λr) − 3
14

j4(λr)

4 4 2
7
j2(λr) − 3

14
j4(λr))

4 5 3
2
j4(λr)

5 1 1
5
j0(λr) − 2

7
j2(λr) + 1

70
j4(λr)

5 2 1
30

j0(λr) + 2
21

j2(λr) + 1
70

j4(λr)

5 3 1
14

j2(λr) − 1
14

j4(λr)

5 4 5
21

j2(λr) − 1
14

j4(λr)

5 5 1
2
j4(λr)

T 2,1,m
ijkl =

1√
6
(δijg

m[k,l]
2[1,1] + δklg

m[i,j]
2[1,1] ), −2 ≤ m ≤ 2,

T 2,2,m
ijkl =

2∑
n,q=−2

g
m[n,q]
2[2,2] g

n[i,j]
2[1,1]g

q[k,l]
2[1,1], −2 ≤ m ≤ 2,

T 4,1,m
ijkl =

4∑
n,q=−4

g
m[n,q]
4[2,2] g

n[i,j]
2[1,1]g

q[k,l]
2[1,1], −4 ≤ m ≤ 4.

Introduce the following notation:

G�
′′m′′m
�′m′p =

√
(2�′ + 1)(2�′′ + 1)gm[m′,m′′]

p[�′,�′′] g
0[0,0]
m[�′,�′′].

Consider the five non-negative-definite matrices An, 1 ≤ n ≤ 5, with the
following matrix entries:
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a�
′′m′′kl,1
�′m′ij =

(
1√
5
T 0,2
ijklG

�′′m′′0
�′m′0 − 1

5
√

14

2∑
m=−2

T 2,2,m
ijkl G�

′′m′′m
�′m′2

− 2
√

2
9
√

35

4∑
m=−4

T 4,1,m
ijkl G�

′′m′′m
�′m′4

)
,

a�
′′m′′kl,2
�′m′ij =

(
1√
5
T 0,2
ijklG

�′′m′′0
�′m′0 +

√
2

5
√

7

2∑
m=−2

T 2,2,m
ijkl G�

′′m′′m
�′m′2

+
1

9
√

70

4∑
m=−4

T 4,1,m
ijkl G�

′′m′′m
�′m′4

)
,

a�
′′m′′kl,3
�′m′ij = T 0,1

ijklG
�′′m′′0
�′m′0 ,

a�
′′m′′kl,4
�′m′ij =

(
1

9
√

5
T 0,2
ijklG

�′′m′′0
�′m′0 −

√
2

5
√

7

2∑
m=−2

T 2,2,m
ijkl G�

′′m′′m
�′m′2

+
√

2
3
√

35

4∑
m=−4

T 4,1,m
ijkl G�

′′m′′m
�′m′4

)
,

a�
′′m′′kl,5
�′m′ij =

((
2
3
T 0,1
ijkl +

1
3
√

5
T 0,2
ijkl

)
G�

′′m′′0
�′m′0 +

(
2
9

2∑
m=−2

T 2,1,m
ijkl

−
√

2
9
√

7

2∑
m=−2

T 2,2,m
ijkl

)
G�

′′m′′m
�′m′2 +

√
2

9
√

35

4∑
m=−4

T 4,1,m
ijkl G�

′′m′′m
�′m′4

)
and let Ln be infinite lower triangular matrices from Cholesky factorisation of
the matrices An.

Theorem 29. The following conditions are equivalent:

1. The matrix τfij�m(λ, 0, 0) with λ > 0 takes values in the simplex described
above.

2. The field E(x) has the form

Eij(ρ, θ, ϕ) = Cδij + 2
√
π

5∑
n=1

∞∑
�=0

�∑
m=−�

∫ ∞

0

j�(λρ) dZn
′

�mij(λ) × Sm� (θ, ϕ),

where

Zn
′

�mij(A) =
∑

(�′,m′,k,l)≤(�,m,i,j)

Zn�′m′kl(A),

and where Zn�′m′kl is the sequence of uncorrelated scattered random measures
on [0,∞) with control measures Φn.

Proof. An application of Karhunen’s theorem.



3.7 The Case of Rank 3 161

Table 3.3 Piezoelectricity classes.

Piezoelectricity class H N(H) dim VH

Triclinic Z1 O(3) 18

Monoclinic Z2 O(2) × Zc
2 8

Monoclinic Z−
2 O(2) × Zc

2 10

Orthotropic Dv
2 D4 × Zc

2 5

Orthotropic D2 O × Zc
2 3

Trigonal Z3 O(2) × Zc
2 6

Trigonal Dv
3 D6 × Zc

2 4

Trigonal D3 D6 × Zc
2 2

Tetragonal Dh
4 D4 × Zc

2 2

Tetragonal Z−
4 O(2) × Zc

2 6

Hexagonal Dh
6 D6 × Zc

2 1

Cubic O− O × Zc
2 1

Transverse hemitropic SO(2) O(2) × Zc
2 4

Transverse isotropic O(2)− O(2) × Zc
2 3

Transverse isotropic O(2) O(2) × Zc
2 1

3.7 The Case of Rank 3

Piezoelectricity is an interaction between electrical and mechanical systems. The
direct piezoelectric effect is that electric polarisation is generated by mechanical
stress. Mathematically, there is a linear operator e : S2(R3) → R3, called the
piezoelectric tensor. In other words, the electric polarisation vector P ∈ R3

depends linearly on the mechanical stress tensor σ ∈ S2(R3).
The space of piezoelectric tensors is S2(R3)⊗R3. The symmetry classes of the

representation g �→ S2(g) ⊗ g have been found by Geymonat & Weller (2002).
They reported 16 symmetry classes shown in Table 3.3.

Let [Gi] be a symmetry class, and let N(Gi) be the normaliser of Gi in O(3).
If there are infinitely many groups between Gi and N(Gi), we take into account
only extreme groups. In this way we obtain a finite list of groups Gj , 1 ≤ j ≤ 49.
The possibilities are shown in Table 3.4.

Consider the case of j = 1. First, we calculate the basis in the space VZ1 =
S2(R3) ⊗ R3 that respects the representation S2(ρ1) ⊗ ρ1. The basis of the first
component have already been calculated in Section 3.6:

T 0
ij = g

0[i,j]
0[1,1] =

1√
3
δij , T 1,m

ij = g
m[i,j]
2[1,1] .

The basis under question is obtained by tensor multiplication of the above tensors
by δkl:
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Table 3.4 The structure of the representation ρ.

j H Gj G̃j ρ

1 Z1 Z1 Zc
2 18A

2 Z1 O(3) O(3) 2ρ1 ⊕ ρ2 ⊕ ρ3

3 Z2 Z2 Z2 × Zc
2 8A

4 Z2 O(2) × Zc
2 O(2) × Zc

2 (3ρ+ ⊕ ρ− ⊕ 2ρ2)⊗̂Au

5 Z−
2 Z−

2 Z2 × Zc
2 10A′

6 Z−
2 O(2) × Zc

2 O(2) × Zc
2 (4ρ1 ⊕ ρ3)⊗̂Au

7 Z3 Z3 Z3 × Zc
2 6A

8 Z3 O(2) × Zc
2 O(2) × Zc

2 (2ρ+ ⊕ ρ1 ⊕ ρ2)⊗̂Au

9 D2 D2 D2 × Zc
2 3A

10 D2 D4 D4 × Zc
2 A1 ⊕ 2B1

11 D2 D2 × Zc
2 D2 × Zc

2 3Au

12 D2 Dh
4 D4 × Zc

2 2A1 ⊕ B1

13 D2 T T × Zc
2 A ⊕ (1E ⊕ 2E)

14 D2 D4 × Zc
2 D4 × Zc

2 A1g ⊕ B1g ⊕ B1u

15 D2 O O × Zc
2 A2 ⊕ E

16 D2 T × Zc
2 T × Zc

2 Au ⊕ (1Eu ⊕ 2Eu)
17 D2 O− O × Zc

2 A1 ⊕ E
18 D2 O × Zc

2 O × Zc
2 A2u ⊕ Eu

19 Dv
2 Dv

2 D2 × Zc
2 5A1

20 Dv
2 D2 × Zc

2 D2 × Zc
2 5B1u

21 Dv
2 Dh

4 D4 × Zc
2 A1 ⊕ A2 ⊕ B1 ⊕ 2B2

22 Dv
2 Dv

4 D4 × Zc
2 A1 ⊕ A2 ⊕ B1 ⊕ 2B2

23 Dv
2 D4 × Zc

2 D4 × Zc
2 A1g ⊕ 2A2g ⊕ B1g ⊕ B2g

24 Z−
4 Z−

4 Z4 × Zc
2 4A

25 Z−
4 O(2) × Zc

2 O(2) × Zc
2 (ρ1 ⊕ ρ2)⊗̂Au

26 D3 D3 D3 × Zc
2 2A1

27 D3 D6 D6 × Zc
2 A1 ⊕ B1

28 D3 D3 × Zc
2 D3 × Zc

2 2A1u

29 D3 Dh
6 D6 × Zc

2 A′
1 ⊕ A′′

1

30 D3 D6 × Zc
2 D6 × Zc

2 A1u ⊕ B1u

31 Dv
3 Dv

3 D3 × Zc
2 4A1

32 Dv
3 D3 × Zc

2 D3 × Zc
2 2A1u ⊕ 2A2u

33 Dv
3 Dh

6 D6 × Zc
2 A′

1 ⊕ A′′
1 ⊕ 2A′′

2

34 Dv
3 Dv

6 D6 × Zc
2 3A1 ⊕ B1

35 Dv
3 D6 × Zc

2 D6 × Zc
2 A1u ⊕ 2A2u ⊕ B1u

36 Dh
4 Dh

4 D4 × Zc
2 2A1

37 Dh
4 D4 × Zc

2 D4 × Zc
2 A1u ⊕ B1u

38 Dh
6 Dh

6 D6 × Zc
2 A′

1

39 Dh
6 D6 × Z2

c D6 × Zc
2 B1u

40 O− O− O × Zc
2 A1

41 O− O × Zc
2 O × Zc

2 A2u

42 SO(2) SO(2) SO(2) × Zc
2 4ρ0

43 SO(2) O(2) O(2) × Zc
2 3ρ+ ⊕ ρ−

44 SO(2) O(2)− O(2) × Zc
2 ρ+ ⊕ 3ρ−

45 SO(2) O(2) × Zc
2 O(2) × Zc

2 (3ρ+ ⊕ ρ−)⊗̂Au

46 O(2) O(2) O(2) × Zc
2 ρ+

47 O(2) O(2) × Zc
2 O(2) × Zc

2 ρ+⊗̂Au

48 O(2)− O(2)− O(2) × Zc
2 3ρ+

49 O(2)− O(2) × Zc
2 O(2) × Zc

2 3ρ+⊗̂Au
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T 1,1,l
ijk =

1√
3
δijδkl,

T 1,2,l
ijk =

2∑
m=−2

1∑
n=−1

g
l[m,n]
1[2,1] g

m[i,j]
2[1,1] δkn =

2∑
m=−2

g
l[m,k]
1[2,1] g

m[i,j]
2[1,1] ,

T 2,l
ijk =

2∑
m=−2

1∑
n=−1

g
l[m,n]
2[2,1] g

m[i,j]
2[1,1] δkn =

2∑
m=−2

g
l[m,k]
2[2,1] g

m[i,j]
2[1,1] ,

T 3,l
ijk =

2∑
m=−2

1∑
n=−1

g
l[m,n]
3[2,1] g

m[i,j]
2[1,1] δkn =

2∑
m=−2

g
l[m,k]
3[2,1] g

m[i,j]
2[1,1] .

Denote

Tmijk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T 1,1,m
ijk , if 1 ≤ m ≤ 3,

T 1,2,m−3
ijk , if 4 ≤ m ≤ 6,

T 2,m−6
ijk , if 7 ≤ m ≤ 11,

T 3,m−11
ijk , otherwise.

Direct application of Lemma 2 gives the following result.

Theorem 30. The one-point correlation tensor of a homogeneous and (Z1, 18A)-
isotropic random field e(x) is

〈e(x)〉ijk =
18∑
m=1

CmT
m
ijk,

where Cm ∈ R. Its two-point correlation tensor has the form

〈e(x), e(y)〉 =
∫

R̂3/Zc
2

cos(p,y − x)fS(p) dΦ(p)

+
∫

(R̂3/Zc
2)1−3

sin(p,y − x)fΛ(p) dΦ(p),
(3.85)

where fS(p) and fΛ(p) are given by (3.42), f(p) is a Φ-equivalence class of
measurable functions acting from R̂3/Zc2 to the set of non-negative-definite Her-
mitian linear operators on VZ1

C
with unit trace, and Φ is a finite measure on

R̂3/Zc2. The field has the form

eijk(x) =
18∑
m=1

CmT
m
ijk +

18∑
m=1

∫
R̂3/Zc

2

cos(p,x) dZSm(p)Tmijk

+
18∑
m=1

∫
(R̂3/Zc

2)1−3

sin(p,x) dZΛm(p)Tmijk,

where
ZS(p) = (ZS1 (p), . . . , ZS18(p))

�,

ZΛ(p) = (ZΛ1 (p), . . . , ZΛ18(p))
�
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are centred VZ1-valued random measures on the corresponding sets with control
measure fS(p) and cross-correlation similar to (3.43):

E[ZS(A) ⊗ZΛ(B)] = −E[ZΛ(A) ⊗ZS(B)] =
∫
A∩B

fΛ(p) dΦ(p). (3.86)

The cases of j = 3, 7, 26, 42, 46, are similar to Theorem 30 and may be left
to the reader.

Consider the case when the group G is of type I, but the representation ρ is
non-trivial. Put j = 13, then G = T . By Altmann & Herzig (1994, Table 70.10)
the restriction of the representation ρ1 of the group O(3) to T is equal to T . By
Altmann & Herzig (1994, Table 70.8) the symmetric tensor square of T is

S2(T ) = A⊕ 1E ⊕ 2E ⊕ T.

The one-dimensional irreducible unitary representations 1E and 2E are of com-
plex type and are conjugate to each other. They generate a two-dimensional
irreducible orthogonal representation of the group T . Denote it by E. The one-
dimensional irreducible component A acts in the space generated by the matrix
g0
0[1,1]. The two-dimensional irreducible component E acts in the space gener-

ated by the matrices g0
2[1,1] and g2

2[1,1]. Finally, the three-dimensional irreducible
component T acts in the space generated by the matrices g−2

2[1,1], g
−1
2[1,1] and g1

2[1,1].
Use Altmann & Herzig (1994, Table 70.8) to determine the structure of the

representation S2(T ) ⊗ T . We have

S2(T ) ⊗ T = (A⊕ E ⊕ T ) ⊗ T = T ⊕ 2T ⊕ (A⊕ E ⊕ 2T ).

Which of these representations act in the space VD2? We find the orthonormal
basis in VD2 . By Altmann & Herzig (1994, Table 22.5), the restriction of the
representation ρ1 of the group O(3) to D2 is equal to B1 ⊕ B2 ⊕ B3. Moreover,
the irreducible component B3 acts on the x-axis, the component B2 on the y-axis
and the component B1 on the z-axis. Then, we determine the structure of the
representation S2(B1 ⊕ B2 ⊕ B3), using Altmann & Herzig (1994, Table 22.8),
and obtain

S2(B1 ⊕B2 ⊕B3) = 3A⊕B1 ⊕B2 ⊕B3.

Using the same table, we determine, that the representation S2(B1 ⊕B2 ⊕B3)⊗
(B1 ⊕ B2 ⊕ B3) contains three copies of the trivial representation A which act
in the one-dimensional spaces generated by the rank 3 tensors

T̃ 1 = g−2
2[1,1] ⊗ (0, 1, 0)�, T̃ 2 = g−1

2[1,1] ⊗ (0, 0, 1)�,

T̃ 3 = g1
2[1,1] ⊗ (1, 0, 0)�.

It follows that the space VD2 has dimension 3. The irreducible component A of
the representation S2(T )⊗T has the Godunov–Gordienko coefficients g0[i,j]

2[1,1] and
acts in the space generated by the tensor

T 1 =
1√
3
(T̃ 1 + T̃ 2 + T̃ 3).



3.7 The Case of Rank 3 165

This tensor clearly belongs to VD2 . The component E of the same representa-
tion has Godunov–Gordienko coefficients g0[i,j]

2[1,1] and g
2[i,j]
2[1,1]. It acts in the space

generated by the tensors

T 2 = − 1√
6
T̃ 1 +

√
2√
3
T̃ 2 − 1√

6
T̃ 3, T 3 =

1√
2
(T̃ 1 − T̃ 3)

that belong to VD2 as well. The structure of the representation ρ is then ρ =
A⊕ E. It is indeed non-trivial.

By Lemma 1, the group G̃ is T × Zc2 and the representation ρ̃ is

ρ̃ = S2(ρ)⊗̂(6Ag) ⊕ Λ2(ρ)⊗̂(3Au).

By Altmann & Herzig (1994, Table 70.8), we have

S2(ρ) = 2A⊕ 2E, Λ2(ρ) = A⊕ E,

then

ρ̃ = (2Ag ⊕ 2Eg) ⊕ (Au ⊕ Eu).

The first copy of Ag acts in the space generated by the rank 6 tensor S1 = T 1 ⊗
T 1, the second in the space generated by S2 = 1√

2
(T 2 ⊗T 2 +T 3 ⊗T 3). The first

copy of Eg acts in the space generated by the tensors S3 = 1√
2
(T 1⊗T 2+T 2⊗T 1)

and S4 = 1√
2
(T 1⊗T 3+T 3⊗T 1). The second copy acts in the space generated by

the tensors S5 = 1√
2
(−T 2⊗T 2 +T 3⊗T 3) and S6 = 1√

2
(T 2⊗T 3 +T 3⊗T 2). The

copy of Au acts in the space generated by the tensor S7 = 1√
2
(T 2⊗T 3−T 3⊗T 2),

while the copy of Eu acts in the space generated by the tensors S8 = 1√
2
(T 1 ⊗

T 2−T 2⊗T 1) and S9 = 1√
2
(T 1⊗T 3−T 3⊗T 1). The matrix f(p) takes the form

f0(p) =
9∑

m=1

fm(p)Sm. (3.87)

The stratification of the orbit space R̂3/T ×Zc2 is given by Equation (3.37). We
study the restrictions of all four non-equivalent irreducible components Ag, Eg,
Au and Eu to the stationary subgroups of all strata of the above stratification,
using Altmann & Herzig (1994, Table 72.8).

The restrictions of all the above components to the stationary subgroups of
the strata (R̂3/T × Zc2)4 and (R̂3/T × Zc2)5 are all trivial. The restriction of
the function f(p) to these strata takes values in the convex compact set C0

of Hermitian non-negative-definite 3 × 3 matrices with unit trace in the basis
{T 1,T 2,T 3}. This is the function given in Equation (3.87).

Consider the following subsets of the group G̃:

G0 = {E,C2x, C2y, C2z}, G1 = {S+
61, S

+
62, S

+
63, S

+
64},

G2 = {C+
31, C

+
32, C

+
33, C

+
34}, G3 = {i, σx, σy, σz},

G4 = {C−
31, C

−
32, C

−
33, C

−
34}, G5 = {S−

61, S
−
62, S

−
63, S

−
64}.

By Altmann & Herzig (1994, Table 72.4), the representation Ag takes value
1 on all subsets, the representation Au takes value (−1)m on the subset Gm.
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From Example 14 we know that the direct sum of the conjugate irreducible
unitary representations ϕ �→ exp(±i�ϕ) of the group SO(2) becomes the irre-
ducible orthogonal representation: the rotation with angle ϕ. Similarly, the direct
sum of the conjugate irreducible unitary representations 1E(g) = exp(iϕ) and
2E(g) = exp(−iϕ) of the group G̃ becomes the irreducible orthogonal represen-
tation E(g): the rotation with angle ϕ. In particular, the representation Eg maps
the elements of G0 and G3 to the identity matrix, the elements of G2 and G5

to the rotation with angle 2π/3, and the elements of G1 and G4 to the rotation
with angle 4π/3. The representation Eu maps the elements of Gm to the rotation
with angle mπ/3.

Write down the spherical Bessel function j(p,y − x) in the form

j(p,y − x) =
1
24

5∑
m=0

∑
g∈Gm

ei(gp,y−x).

The inner sums, say jm(p,y − x), have the form

j0(p,y − x) = 4 cos(p1z1) cos(p2z3) cos(p3z3) − 4i sin(p1z1) sin(p2z2) sin(p3z3),

j1(p,y − x) = 4 cos(p1z2) cos(p3z1) cos(p2z3) + 4i sin(p1z2) sin(p3z1) sin(p2z3),

j2(p,y − x) = 4 cos(p2z1) cos(p1z3) cos(p3z2) − 4i sin(p2z1) sin(p1z3) sin(p3z2),

j3(p,y − x) = 4 cos(p1z1) cos(p2z3) cos(p3z3) + 4i sin(p1z1) sin(p2z2) sin(p3z3),

j4(p,y − x) = 4 cos(p1z2) cos(p3z1) cos(p2z3) − 4i sin(p1z2) sin(p3z1) sin(p2z3),

j5(p,y − x) = 4 cos(p2z1) cos(p1z3) cos(p3z2) + 4i sin(p2z1) sin(p1z3) sin(p3z2).

Define the matrices fS0 (p) and fΛ0 (p) by an equation similar to (3.42):

fS0 (p) = f0(p) + f�0 (p), fΛ0 (p) = i−1(−f0(p) + f�0 (p)). (3.88)

Exactly as in Lemma 2, we prove that the contribution of the strata (R̂3/T ×Zc2)4
and (R̂3/T × Zc2)5 to the two-point correlation tensor is:

1
6

5∑
m=0

∫
(R̂3/T ×Zc

2)4,5

Re jm(p,y − x)fSm0 (p) dΦ(p)

+
1
6

5∑
m=0

∫
(R̂3/T ×Zc

2)4,5

Im jm(p,y − x)fΛm0 (p) dΦ(p).

Here fSm0 (p) is the matrix fS0 (p), where the components (f3(p), f4(p))�

and (f5(p), f5(p))� are replaced with the vectors Eg(hm)(f3(p), f4(p))� and
Eg(hm)(f3(p), f4(p))�, where hm is an arbitrary element of the set Gm. Simi-
larly, fΛm0 (p) is the matrix fΛ0 (p), where the component f7(p) is replaced with
Au(hm)f7(p) and the component (f8(p), f9(p))� with Eu(hm)(f8(p), f9(p))�.

Consider the stratum (R̂3/T ×Zc2)1 with stationary subgroup H1 = Dv
2(C2x).

The restrictions of Ag and Eg to H1 are trivial. The restrictions of the remaining
representations to H1 do not contain trivial components. It follows that the
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restriction of the function f(p) to this stratum, say f1(p), takes values in the
convex compact set C1. The 3× 3 Hermitian non-negative-definite matrices with
unit trace belonging to C1 satisfy the following conditions:

f7(p) = f8(p) = f9(p) = 0.

The contribution of this stratum to the two-point correlation tensor of the field is

1
6

5∑
m=0

∫
(R̂3/T ×Zc

2)1

Re jm(p,y − x)fSm1 (p) dΦ(p).

Consider the stratum (R̂3/T × Zc2)2 with stationary subgroup H2 = Z3. The
restrictions of Ag and Au to H2 are trivial. The restrictions of the remaining
representations to H2 do not contain trivial components. It follows that the
restriction of the function f(p) to this stratum, say f2(p), takes values in the
convex compact set C2. The 3× 3 Hermitian non-negative-definite matrices with
unit trace belonging to C2 satisfy the following conditions:

f3(p) = f4(p) = f5(p) = f6(p) = f8(p) = f9(p) = 0.

The contribution of this stratum to the two-point correlation tensor of the field is

1
6

5∑
m=0

∫
(R̂3/T ×Zc

2)2

Re jm(p,y − x)fSm2 (p) dΦ(p)

+
1
6

5∑
m=0

∫
(R̂3/T ×Zc

2)2

Im jm(p,y − x)fΛm2 (p) dΦ(p).

Finally, consider the stratum (R̂3/T ×Zc2)3 and (R̂3/T ×Zc2)0 with stationary
subgroups H3 = Z−

2 (σy) and H0 = T × Zc2. The restrictions of Ag to both H3

and H0 are trivial. The restrictions of the remaining representations to both H3

and H0 do not contain trivial components. It follows that the restriction of the
function f(p) to this stratum, say f3(p), takes values in the convex compact set
C3. The 3×3 Hermitian non-negative-definite matrices with unit trace belonging
to C3 satisfy the following conditions:

f3(p) = f4(p) = · · · = f9(p) = 0.

It is easy to see that C3 is an interval with extreme points S1 and 1√
2
S2. Then

we have

f3(p) = C1(p)S1 + C2(p)
1√
2
S2,

where C1(p) and C2(p) are the barycentric coordinates of the point f3(p). Denote

Φq(p) = Cq(p) dΦ(p), q = 1, 2.
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These strata contribute to the two-point correlation tensor of the field by

1
6

5∑
m=0

∫
(R̂3/T ×Zc

2)0,3

Re jm(p,y − x) dΦ1(p)S1

+
1
6

5∑
m=0

∫
(R̂3/T ×Zc

2)0,3

Re jm(p,y − x) dΦ2(p)
1√
2
S2.

Let u0n(p,x) (resp. u1n(p,x), resp. u2n(p,x), be different combinations of
cosines and sines of p1x1, p2x2 and p3x3 (resp. p1x2, p3x1 and p2x3, resp. p2x1,
p1x3 and p3x2). Enumerate them in such a way that the first four combinations
contain either 3 or 1 cosine.

Combining everything together, we obtain the following result.

Theorem 31. The one-point correlation tensor of a homogeneous and (T , A⊕
E)-isotropic random field e(x) is

〈e(x)〉 = CT 1, C ∈ R.

Its two-point correlation tensor is:

〈e(x), e(y)〉 =
1
6

2∑
m=0

∫
(R̂3/T ×Zc

2)4,5

Re jm(p,y − x)fSm0 (p) dΦ(p)

+
1
6

2∑
m=0

∫
(R̂3/T ×Zc

2)4,5

Im jm(p,y − x)fΛm0 (p) dΦ(p)

+
1
6

2∑
m=0

∫
(R̂3/T ×Zc

2)1

Re jm(p,y − x)fSm1 (p) dΦ(p)

+
1
6

2∑
m=0

∫
(R̂3/T ×Zc

2)2

Re jm(p,y − x)fSm2 (p) dΦ(p)

+
1
6

2∑
m=0

∫
(R̂3/T ×Zc

2)2

Im jm(p,y − x)fΛm2 (p) dΦ(p)

+
1
6

2∑
m=0

∫
(R̂3/T ×Zc

2)0,3

Re jm(p,y − x) dΦ1(p)S1

+
1
6

2∑
m=0

∫
(R̂3/T ×Zc

2)0,3

Re jm(p,y − x) dΦ2(p)
1√
2
S2.

The field has the form:

e(x) = CT 1 +
1√
6

2∑
m=0

4∑
n=1

∫
(R̂3/T ×Zc

2)4,5

umn(p,x) dZSnm0(p)T
m+1

+
1√
6

2∑
m=0

8∑
n=5

∫
(R̂3/T ×Zc

2)4,5

umn(p,x) dZΛnm0(p)T
m+1
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+
1√
6

2∑
m=0

8∑
n=1

∫
(R̂3/T ×Zc

2)1

umn(p,x) dZSnm1(p)T
m+1

+
1√
6

2∑
m=0

4∑
n=1

∫
(R̂3/T ×Zc

2)2

umn(p,x) dZSnm2(p)T
m+1

+
1√
6

2∑
m=0

8∑
n=5

∫
(R̂3/T ×Zc

2)2

umn(p,x) dZΛnm2(p)T
m+1

+
1√
6

2∑
m=0

8∑
n=1

∫
(R̂3/T ×Zc

2)0,3

umn(p,x) dZSnm3(p)T
m+1

+
1√
6

2∑
m=0

8∑
n=1

∫
(R̂3/T ×Zc

2)0,3

umn(p,x) dZΛnm4(p)T
m+1,

where
ZSn0 (p) = (ZSn00 (p), . . . , ZSn20 (p))�,

ZΛn0 (p) = (ZΛn00 (p), . . . , ZΛn20 (p))�,

ZSn1 (p) = (ZSn01 (p), . . . , ZSn21 (p))�,

ZSn2 (p) = (ZSn02 (p), . . . , ZSn22 (p))�,

ZΛn2 (p) = (ZΛn02 (p), . . . , ZΛn22 (p))�,

ZSn3 (p) = (ZSn03 (p), . . . , ZSn23 (p))�,

ZSn4 (p) = (ZSn04 (p), . . . , ZSn24 (p))�

are centred random measures on the corresponding sets with the corresponding
control measures and non-zero cross-correlations similar to (3.86):

E[ZSni (A) ⊗ZΛni (B)] =
∫
A∩B

fΛmi (p) dΦ(p)

for i = 0, 2.

Proof. The spectral expansion of the field follows from Karhunen’s theorem.

Similar cases, when j = 10, 15, 27 and 43, may be left to the reader.
Consider a new case, when j = 5. The representation ρ = 10A′ is trivial, but

the group G = Z−
2 is of type III. We have π(G) = Z2, ρπ(g) = 10A, the trivial

representation of Z2. The representation Ŝ2(ρπ) is trivial on π(G)∩G, that is, on
the identity matrix, and trivial times −1 on G\π(G), that is, on the non-identity
element of Z−

2 . This gives Ŝ2(ρπ) = 45B, where B is the non-trivial irreducible
representation of Z−

2 . The representation ρ̃ of the group G̃ = Z2 × Zc2 is

ρ̃ = 55A⊗̂Ag ⊕ 45B⊗̂Au = 55Ag ⊕ 45Bu.

The representation Ag is trivial. Under the action of ρ̃, the matrix fS(p) does not
change. The operators 45Bu(E) and 45Bu(σh) do not change fΛ(p), while the
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operators 45Bu(C2) and 45Bu(i) multiply it by −1, see Altmann & Herzig (1994,
Table 60.4). The corresponding parts of the spherical Bessel function are

j1(p,x) =
1
4
(ei(Ep,x) + ei(σhp,x)) =

1
2
ei(p1x1+p2x2) cos(p3x3),

j2(p,x) =
1
4
(ei(C2p,x) + ei(ip,x)) =

1
2
e−i(p1x1+p2x2) cos(p3x3).

This result was obtained as follows. The group G̃ is a subgroup of the group
O × Zc2. The matrix entries of the orthogonal representation T1u of this group
have been calculated while proving Theorem 22. The elements of G̃ act on the
vector p by the corresponding matrices.

The structure of the orbit space R̂3/G̃ is given by Equation (3.34). The
restriction of the representation 55Ag to any stationary subgroup is trivial. The
restrictions of the representation 45Bu to all stationary subgroups except Z2 and
Z2 × Zc2 are trivial. For Z2, this restriction is 45B, while for Z2 × Zc2 it is 45Bu
itself. Both latter restrictions do not contain trivial components. The two-point
correlation tensor takes the form

〈e(x), e(y)〉 =
∫

R̂3/Z2×Zc
2

cos(p1z1 + p2z2) cos(p3z3)fS(p) dΦ(p)

+
∫

(R̂3/Z2×Zc
2)1−3,6,7

sin(p1z1 + p2z2) cos(p3z3)fΛ(p) dΦ(p).

(3.89)

We proceed to find an orthonormal basis in the space VZ
−
2 that respects the

representation ρ. By Altmann & Herzig (1994, Table 12.5), the restriction of
the representation T1u of the group O × Zc2 to the subgroup Z−

2 is 2A′ ⊕ A′′.
Moreover, two copies of the trivial representation A′ act on the x- and y-axes,
while the non-trivial representation A′′ acts on the z-axis. The symmetric tensor
square of this representation is

S2(2A′ ⊕A′′) = 4A′ ⊕ 2A′′.

Moreover, the four trivial components act in the one-dimensional spaces gen-

erated by the matrices T 1 =
(

1 0 0
0 0 0
0 0 0

)
, T 2 =

(
0 0 0
0 1 0
0 0 0

)
, T 3 =

(
0 0 0
0 0 0
0 0 1

)
and

T 4 = 1√
2

(
0 0 1
0 0 0
1 0 0

)
. The two non-trivial components act in the spaces generated by

the matrices T 5 = 1√
2

(
0 1 0
1 0 0
0 0 0

)
and T 6 = 1√

2

(
0 0 0
0 0 1
0 1 0

)
. After tensor multiplication

by 2A′ ⊕A′′, the 10 copies of the irreducible trivial representation A′ act in the
spaces generated by the rank 3 tensors

Tm =

⎧⎪⎪⎨⎪⎪⎩
Tm ⊗ (1, 0, 0)�, if 1 ≤ m ≤ 4,

Tm−4 ⊗ (0, 0, 1)�, if 5 ≤ m ≤ 8,

Tm−4 ⊗ (0, 1, 0)�, otherwise.
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Let un(p,x) be four different combinations of sines and cosines of p1x1 +p2x2

and p3x3. Enumerate them in such order that the third and fourth combinations
contain both sines and cosines.

Theorem 32. The one-point correlation tensor of a homogeneous and
(Z−

2 , 10A′)-isotropic random field e(x) has the form

〈e(x)〉 =
10∑
m=1

CmT
m.

Its two-point correlation tensor has the form (3.89). The field has the form

e(x) =
10∑
m=1

CmT
m +

2∑
n=1

∫
R̂3/Z2×Zc

2

un(p,x) dZSnm (p)Tm

+
4∑

n=3

∫
(R̂3/Z2×Zc

2)1−3,6,7

un(p,x) dZΛnm (p)Tm,

where
ZSm(p) = (ZS1(p), . . . , ZS4(p))�,

ZΛm(p) = (ZΛ1(p), . . . , ZΛ4(p))�

are uncorrelated random measures with control measure Φ and cross-correlation
(3.86).

Proof. As usual, the last part follows from Karhunen’s theorem.

The cases of j = 19, 24, 31, 36, 38, 40, 48 are similar and may be left to the
reader.

Consider the case when G is of type III and ρ is non-trivial. Put j = 34. That
is, G = Dh

6 and ρ = 3A1 ⊕B1. Then ρ̃ = D6 × Zc2. By Lemma 1, we have

ρ̃ = S2(ρπ)⊗̂(10Ag) ⊕ Λ̂2(ρπ)⊗̂(6Au).

Furthermore, π(G) = D6 and ρπ = 3A1⊕B2. Then we obtain S2(ρπ) = 7A1⊕3B2

and Λ2(ρπ) = 3A1 ⊕ 3B2. Because π(G) ∩G = Z6, the representation Λ̂2(ρπ) is
equal to 3A1⊕3B2 on Z6 and −(3A1⊕3B2) onDh

6 \Z6. that is, Λ̂2(ρπ) = 3A2⊕B1.
Finally,

ρ̃ = (7A1g ⊕ 3B2g) ⊕ (3A2u ⊕B1u).

The next step is to define the basis in the space VD
v
3 . The restriction of the

representation ρ1 of the group O(3) to the subgroup Dv
3 is A1 ⊕ E by Alt-

mann & Herzig (1994, Table 51.5A or 51.5B), where the representation A1 acts
on the z-axis and the representation E acts in the xy-plane. By Altmann &
Herzig (1994, Table 51.8), the symmetric tensor square of the representation
A1 ⊕ E is S2(A1 ⊕ E) = 2A1 ⊕ 2E. The first copy of A1 acts in the one-

dimensional space generated by the matrix T 1 =
(

0 0 0
0 1 0
0 0 0

)
, the second copy
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in the space generated by the matrix T 2 = 1√
2

(
1 0 0
0 0 0
0 0 1

)
. The first copy of E

acts in the two-dimensional space generated by the matrices T 3 = 1√
2

(
0 1 0
1 0 0
0 0 0

)
and T 4 =

(
0 0 0
0 0 1
0 1 0

)
, the second copy in the space generated by the matri-

ces T 5 = 1√
2

(
−1 0 0
0 0 0
0 0 1

)
and T 6 = 1√

2

(
0 0 1
0 0 0
1 0 0

)
. After tensor multiplication by

A1 ⊕ E, we obtain four copies of the trivial representation A1 acting in the
one-dimensional spaces generated by the rank 3 tensors T 1 = T 1 ⊗ (0, 1, 0)�,
T 2 = T 2 ⊗ (0, 1, 0)�, T 3 = 1√

2
(T 3 ⊗ (1, 0, 0)� + T 4 ⊗ (0, 0, 1)� and T 4 =

1√
2
(T 5 ⊗ (1, 0, 0)� + T 6 ⊗ (0, 0, 1)�.
On the other hand, by Altmann & Herzig (1994, Table 54.5), the restriction

of the representation ρ1 of the group O(3) to the subgroup Dv
6 is A1 ⊕ E1,

where the representation A1 acts on the z-axis and the representation E1 acts in
the xy-plane. By Altmann & Herzig (1994, Table 54.8), The symmetric tensor
square of the representation A1 ⊕ E1 is S2(A1 ⊕ E1) = 2A1 ⊕ E1 ⊕ E2. The
first copy of A1 acts in the one-dimensional space generated by the matrix T 1,
the second copy in the space generated by the matrix T 2. The copy of E1 acts
in the two-dimensional space generated by the matrices T 3 and T 4, while the
copy of E2 acts in the space generated by the matrices T 5 and T 6. After tensor
multiplication by A1 ⊕ E1, we obtain three copies of the trivial representation
A1 acting in the one-dimensional spaces generated by the rank 3 tensors T 1, T 2

and T 3, and a copy of B1 acting in the space generated by T 4.
Next, we divide the group G̃ = D6 × Zc2 into four subsets:

G1 = {E,C+
3 , C

−
3 , σv1, σv2, σv3},

G2 = {C+
6 , C

−
6 , C2, σd1, σd2, σd3},

G3 = {C ′′
21, C

′′
22, C

′′
23, i, S

−
6 , S

+
6 },

G4 = {C ′
21, C

′
22, C

′
23, S

−
3 , S

+
3 , σh}.

The four irreducible components A1g, B2g, 3A2u and B1u of the representation
ρ̃ take the same values on the elements of each group. We write the spherical
Bessel function in the form

j(p,y − x) =
1
24

4∑
m=1

∑
g∈Gm

ei(gp,y−x).

and calculate the matrices of the representation A2u ⊕ E1u, using the Euler
angles from Altmann & Herzig (1994, Table 35.1). The above representation is
the restriction of the representation ρ1 of the group O(3) to the subgroup G̃ by
Altmann & Herzig (1994, Table 35.10). Then, we calculate the functions

jm(p,y − x) =
∑
g∈Gm

ei(gp,y−x)
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and obtain

j1(p,y − x) = 2 exp(i(p1z1 + p3z3)) cos(p2z2)

+ 2 exp
(
i
(p1

2
(−z1 +

√
3z2) + p3z3

))
cos
(p2

2
(
√

3z1 + z2)
)

+ 2 exp
(
i
(p1

2
(−z1 −

√
3z2) + p3z3

))
cos
(p2

2
(
√

3z1 − z2)
)
,

j2(p,y − x) = 2 exp(i(−p1z1 + p3z3)) cos(p2z2)

+ 2 exp
(
i
(p1

2
z1 +

p2

2
z2 + p3z3

))
cos
(p1

2

√
3z2 −

p2

2

√
3z1
)

+ 2 exp
(
i
(p1

2
z1 −

p2

2
z2 + p3z3

))
cos
(p1

2

√
3z2 +

p2

2

√
3z1
)
,

and jm+2(p,y − x) = jm(p,y − x) for m = 1, 2.
Define the matrices fS0 (p) and fΛ0 (p) by Equation (3.88). The restrictions of all

four irreducible components A1g, B2g, A2u and B1u to the stationary subgroups
of the strata (R̂3/D6×Zc2)5 and (R̂3/D6×Zc2)7 are trivial. Exactly as in Lemma 2,
we prove that the contribution of the above strata to the two-point correlation
tensor of the field is as follows:

1
2

4∑
m=1

∫
(R̂3/D6×Zc

2)5,7

Re jm(p,y − x)fSm0 (p) dΦ(p)

+
1
2

4∑
m=1

∫
(R̂3/D6×Zc

2)5,7

Im jm(p,y − x)fΛm0 (p) dΦ(p),

where fSm0 (p) (resp. fΛm0 (p)) is the result of action of the operator ρ̃(h) on the
matrix fS0 (p) (resp. fΛ0 (p)) with h ∈ Gm. By Altmann & Herzig (1994, Table
35.4), fS1

0 (p) = fS0 (p) and fΛ1
0 (p) = fΛ0 (p), any element of G2 multiplies the

matrix entries

(fS0 )14(p), (fS0 )24(p), (fS0 )34(p), (fS0 )41(p), (fS0 )42(p), (fS0 )43(p),

(fΛ0 )14(p), (fΛ0 )24(p), (fΛ0 )34(p), (fΛ0 )41(p), (fΛ0 )42(p), (fΛ0 )43(p)

by −1, any element of Gm+2 multiplies the matrix fΛm0 (p) by −1, m = 1,
2. The matrix f0(p) takes values in the convex compact set C0 of Hermitian
non-negative-definite 4 × 4 matrices with unit trace.

The restrictions of the irreducible components A1g and A2u to the station-
ary subgroup of the stratum (R̂3/D6 × Zc2)6 are trivial, while the restrictions
of the two remaining components are not. The set C1 is the set of Hermitian
non-negative-definite 4 × 4 matrices with unit trace f1(p) with the following
restrictions:

(f1)14(p) = (f1)24(p) = (f1)34(p)

= (f1)41(p) = (f1)42(p) = (f1)43(p) = 0.
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The stratum (R̂3/D6 × Zc2)6 contributes to the two-point correlation tensor of
the field as follows:

1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)6

Re jm(p,y − x)fSm1 (p) dΦ(p)

+
1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)6

Im jm(p,y − x)fΛm1 (p) dΦ(p).

The restrictions of the irreducible components A1g and B1u to the station-
ary subgroup of the stratum (R̂3/D6 × Zc2)4 are trivial, while the restrictions
of the two remaining components are not. The set C2 is the set of Hermitian
non-negative-definite 4 × 4 matrices with unit trace f2(p) with the following
restrictions:

(fS2 )14(p) = (fS2 )24(p) = (fS2 )34(p) = (fS2 )41(p) = (fS2 )42(p) = (fS2 )43(p) = 0,

(fΛ2 )12(p) = (fΛ2 )13(p) = (fΛ2 )23(p) = (fΛ2 )21(p) = (fΛ2 )31(p) = (fΛ2 )32(p) = 0.

The stratum (R̂3/D6 × Zc2)4 contributes to the two-point correlation tensor of
the field as follows:

1
2

4∑
m=1

∫
(R̂3/D6×Zc

2)4

Re jm(p,y − x)fSm2 (p) dΦ(p)

+
1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)4

Im jm(p,y − x)fΛm2 (p) dΦ(p).

Finally, the restrictions of all non-trivial irreducible components to the sta-
tionary subgroups of the remaining strata are non-trivial. The set C3 is the set
of Hermitian non-negative-definite 4× 4 matrices with unit trace f3(p) with the
following restrictions:

(fS3 )14(p) = (fS3 )24(p) = (fS3 )34(p) = (fS3 )41(p) = (fS3 )42(p) = (fS3 )43(p) = 0,

fΛ3 (p) = 0.

The contribution of the remaining strata is

1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)0−3

Re jm(p,y − x)fSm3 (p) dΦ(p).

Let u1n(p,x) be four different combinations of sines and cosines of p1x1+p3x3

and p2x2, four different combinations of sines and cosines of p1
2 (−x1 +

√
3x2) +

p3x3 and p2
2 (

√
3x1 + x2) plus four different combinations of sines and cosines

of p1
2 (−x1 −

√
3x2) + p3x3 and p2

2 (
√

3x1 − x2). Enumerate them in such order
that the combinations from seventh till twelfth contain both sines and cosines.
Similarly, let u2n(p,x) be four different combinations of sines and cosines of
−p1x1 + p3x3 and p2x2 plus four different combinations of sines and cosines of
p1
2 (−x1 +

√
3x2) + p3x3 and p2

2 (
√

3x1 + x2) plus four different combinations of
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sines and cosines of p12 (−x1−
√

3x2)+p3x3 and p2
2 (

√
3x1−x2). Enumerate them

in the similar order.

Theorem 33. The one-point correlation tensor of a homogeneous and
(Dh

6 , 3A1 ⊕B1)-isotropic random field e(x) is

〈e(x)〉 =
3∑

m=1

CmT
m, Cm ∈ R.

Its two-point correlation tensor has the form

〈e(x), e(y)〉 =
1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)5,7

Re jm(p,y − x)fSm0 (p) dΦ(p)

+
1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)5,7

Im jm(p,y − x)fΛm0 (p) dΦ(p)

+
1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)6

Re jm(p,y − x)fSm1 (p) dΦ(p)

+
1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)6

Im jm(p,y − x)fΛm1 (p) dΦ(p)

+
1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)4

Re jm(p,y − x)fSm2 (p) dΦ(p)

+
1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)4

Im jm(p,y − x)fΛm2 (p) dΦ(p)

+
1
4

2∑
m=1

∫
(R̂3/D6×Zc

2)0−3

Re jm(p,y − x)fSm3 (p) dΦ(p).

The field has the form

e(x) =
3∑

m=1

CmT
m +

1
2

2∑
m=1

6∑
n=1

∫
(R̂3/D6×Zc

2)5,7

umn(p,x) dZSn0m(p)Tm

+
1
2

2∑
m=1

12∑
n=7

∫
(R̂3/D6×Zc

2)5,7

umn(p,x) dZΛn0m(p)Tm

+
1
2

2∑
m=

6∑
n=1

∫
(R̂3/D6×Zc

2)6

umn(p,x) dZSn1m(p)Tm

+
1
2

2∑
m=1

12∑
n=7

∫
(R̂3/D6×Zc

2)6

umn(p,x) dZΛn1m(p)Tm

+
1
2

2∑
m=1

6∑
n=1

∫
(R̂3/D6×Zc

2)4

umn(p,x) dZSn2m(p)Tm
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+
1
2

2∑
m=1

12∑
n=7

∫
(R̂3/D6×Zc

2)4

umn(p,x) dZΛn2m(p)Tm

+
1
2

2∑
m=1

12∑
n=1

∫
(R̂3/D6×Zc

2)0−3

umn(p,x) dZSn3m(p)Tm,

where
ZSn0 (p) = (ZSn01 (p), . . . , ZSn04 (p))�,

ZΛn0 (p) = (ZΛn01 (p), . . . , ZΛn04 (p))�,

ZSn1 (p) = (ZSn11 (p), . . . , ZSn14 (p))�,

ZΛn1 (p) = (ZΛn11 (p), . . . , ZΛn14 (p))�,

ZΛn2 (p) = (ZΛn02 (p), . . . , ZΛn22 (p))�,

ZSn2 (p) = (ZSn21 (p), . . . , ZSn24 (p))�,

ZΛn2 (p) = (ZΛn21 (p), . . . , ZΛn24 (p))�,

ZSn3 (p) = (ZSn31 (p), . . . , ZSn34 (p))�

are centred random measures on the corresponding sets with the corresponding
control measures and non-zero cross-correlations similar to (3.86):

E[ZSni (A) ⊗ZΛni (B)] =
∫
A∩B

fΛmi (p) dΦ(p)

for 0 ≤ i ≤ 2.

The cases of j = 12, 17, 21, 22, 29, 33, 44 are similar and may be left to the
reader.

The cases when G is of type II, when j = 4, 6, 8, 11, 14, 16, 18, 20, 23, 25, 28,
30, 32, 35, 37, 39, 41, 45, 47 and 49, are similar to those considered in Section 3.6
and also may be left to the reader.

Finally, consider the most complicated case of j = 2. First, determine the
structure of the representation S2(ρ). Using the Clebsch–Gordan rule, we obtain:

S2(2ρ1 ⊕ ρ2 ⊕ ρ3) = 5ρ0 ⊕ ρ1 ⊕ 10ρ2 ⊕ 5ρ3 ⊕ 5ρ4 ⊕ ρ5 ⊕ ρ6.

The symmetric covariant tensors and their syzygies have been calculated in
Chapter 2, Equations (2.40), (2.44) and (2.45), Table 2.3.

We determine the polar tensors of the uncoupled basis of the space S2(VZ1).
The results are shown in Table 3.5.

Equation (3.28), which determines the M-functions, takes the form

Mρ2�,n�

ijki′jk′(p) =
2�∑

m=−2�

Tρ2�,n�,m
ijki′j′k′ ρ

2�g
m0(p),

where 0 ≤ � ≤ 3, 1 ≤ n0 ≤ q0 = 5, 1 ≤ n1 ≤ q1 = 10, 1 ≤ n2 ≤ q2 = 5 and
n3 = q3 = 1.
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Table 3.5 The polar tensors of the uncoupled basis of the space S2(VZ1).

Tensor Value

T
ρ0,1,0
ijki′j′k′

1
3
√

3
δijδi′j′δkk′

T
ρ0,2,0
ijki′j′k′

1
3
√

2

∑1
l=−1

(
δijδkl

∑2
m′=−2 g

l[m′,k′]
1[2,1]

g
m′[i′,j′]
2[1,1]

+ δi′j′δk′l
∑2

m=−2 g
l[m,k]
1[2,1]

g
m[i,j]
2[1,1]

)

T
ρ0,3,0
ijki′j′k′

1√
3

∑1
l=−1

∑2
m,m′=−2 g

l[m,k]
1[2,1]

g
m[i,j]
2[1,1]

g
l[m′,k′]
1[2,1]

g
m′[i′,j′]
2[1,1]

T
ρ0,4,0
ijki′j′k′

1√
5

∑2
l,m,m′=−2 g

l[m,k]
2[2,1]

g
m[i,j]
2[1,1]

g
l[m′,k′]
2[2,1]

g
m′[i′,j′]
2[1,1]

T
ρ0,5,0
ijki′j′k′

1√
7

∑3
l=−3

∑2
m,m′=−2 g

l[m,k]
3[2,1]

g
m[i,j]
2[1,1]

g
l[m′,k′]
3[2,1]

g
m′[i′,j′]
2[1,1]

T
ρ2,1,m
ijki′j′k′

1
3
δijδi′j′g

m[k,k′]
2[1,1]

T
ρ2,2,m
ijki′j′k′

1√
6

(
δij

∑1
l′=−1

∑2
n′=−2 g

m[k,l′]
2[1,1]

g
l′[n′,k′]
1[2,1]

g
n′[i′,j′]
2[1,1]

+ δi′j′
∑1

l=−1

∑2
n=−2 g

m′[k′,l]
2[1,1]

g
l[n,k]
1[2,1]

g
n[i,j]
2[1,1]

)

T
ρ2,3,m
ijki′j′k′

∑1
l,l′=−1

∑2
n,n′=−2 g

m[l,l′]
2[1,1]

g
l[n,k]
1[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
1[2,1]

g
n′[i′,j′]
2[1,1]

T
ρ2,4,m
ijki′j′k′

1√
6

(
δij

∑2
l′,n′=−2 g

m[k,l′]
2[1,1]

g
l′[k′,n′]
2[1,2]

g
n′[i′,j′]
2[1,1]

+ δi′j′
∑2

l,n=−2 g
m′[k′,l]
2[1,1]

g
l[k,n]
2[1,2]

g
n[i,j]
2[1,1]

)

T
ρ2,5,m
ijki′j′k′

1√
6

(
δij

∑3
l′=−3

∑2
n′=−2 g

m[k,l′]
2[1,3]

g
l′[n′,k′]
3[2,1]

g
n′[i′,j′]
2[1,1]

+ δi′j′
∑3

l=−3

∑2
n=−2 g

m′[k′,l]
2[1,3]

g
l[n,k]
3[2,1]

g
n[i,j]
2[1,1]

)

T
ρ2,6,m
ijki′j′k′

∑2
l,l′,n,n′=−2 g

m[l,l′]
2[2,2]

g
l[n,k]
2[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
2[2,1]

g
n′[i′,j′]
2[1,1]

T
ρ2,7,m
ijki′j′k′

1√
2

(∑1
l′=−1

∑2
l′,n,n′=−2 g

m[l,l′]
2[1,2]

g
l[n,k]
1[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
2[2,1]

g
n′[i′,j′]
2[1,1]

+
∑1

l=−1

∑2
l,n,n′=−2 g

m′[l′,l]
2[1,2]

g
l′[n′,k′]
1[2,1]

g
n′[i′,j′]
2[1,1]

g
l[n,k]
2[2,1]

g
n[i,j]
2[1,1]

)

T
ρ2,8,m
ijki′j′k′

1√
2

(∑1
l=−1

∑2
n,n′=−2

∑3
l′=−3 g

m[l,l′]
2[1,3]

g
l[n,k]
1[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
3[2,1]

g
n′[i′,j′]
2[1,1]

+
∑1

l′=−1

∑2
n,n′=−2

∑3
l=−3 g

m′[l′,l]
2[1,3]

g
l′[n′,k′]
1[2,1]

g
n′[i′,j′]
2[1,1]

g
l[n,k]
3[2,1]

g
n[i,j]
2[1,1]

)

T
ρ2,9,m
ijki′j′k′

1√
2

(∑2
l,n,n′=−2

∑3
l′=−3 g

m[l,l′]
2[2,3]

g
l[n,k]
2[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
3[2,1]

g
n′[i′,j′]
2[1,1]

+
∑2

l′,n,n′=−2

∑3
l=−3 g

m′[l′,l]
2[2,3]

g
l′[n′,k′]
2[2,1]

g
n′[i′,j′]
2[1,1]

g
l[n,k]
3[2,1]

g
n[i,j]
2[1,1]

)

T
ρ2,10,m
ijki′j′k′

∑2
n,n′=−2

∑3
l,l′=−3 g

m[l,l′]
2[3,3]

g
l[n,k]
3[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
3[2,1]

g
n′[i′,j′]
2[1,1]

T
ρ4,1,m
ijki′j′k′

1√
6

(
δij

∑3
l′=−3

∑2
n′=−2 g

m[k,l′]
4[1,3]

g
l′[n′,k′]
3[2,1]

g
n′[i′,j′]
2[1,1]

+ δi′j′
∑3

l=−3

∑2
n=−2 g

m′[k′,l]
4[1,3]

g
l[n,k]
3[2,1]

g
n[i,j]
2[1,1]

)

T
ρ4,2,m
ijki′j′k′

∑2
l,l′,n,n′=−2 g

m[l,l′]
4[2,2]

g
l[n,k]
2[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
2[2,1]

g
n′[i′,j′]
2[1,1]

T
ρ4,3,m
ijki′j′k′

1√
2

(∑1
l=−1

∑2
n,n′=−2

∑3
l′=−3 g

m[l,l′]
4[1,3]

g
l[n,k]
1[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
3[2,1]

g
n′[i′,j′]
2[1,1]

+
∑1

l′=−1

∑2
n,n′=−2

∑3
l=−3 g

m′[l′,l]
4[1,3]

g
l′[n′,k′]
1[2,1]

g
n′[i′,j′]
2[1,1]

g
l[n,k]
3[2,1]

g
n[i,j]
2[1,1]

)
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Table 3.5 (Cont.)

Tensor Value

T
ρ4,4,m
ijki′j′k′

1√
2

(∑2
l,n,n′=−2

∑3
l′=−3 g

m[l,l′]
4[2,3]

g
l[n,k]
2[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
3[2,1]

g
n′[i′,j′]
2[1,1]

+
∑2

l′,n,n′=−2

∑3
l=−3 g

m′[l′,l]
4[2,3]

g
l′[n′,k′]
2[2,1]

g
n′[i′,j′]
2[1,1]

g
l[n,k]
3[2,1]

g
n[i,j]
2[1,1]

)

T
ρ4,5,m
ijki′j′k′

∑2
n,n′=−2

∑3
l,l′=−3 g

m[l,l′]
4[3,3]

g
l[n,k]
3[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
3[2,1]

g
n′[i′,j′]
2[1,1]

T
ρ6,m
ijki′j′k′

∑2
n,n′=−2

∑3
l,l′=−3 g

m[l,l′]
6[3,3]

g
l[n,k]
3[2,1]

g
n[i,j]
2[1,1]

g
l′[n′,k′]
3[2,1]

g
n′[i′,j′]
2[1,1]

The complicatedM-functions are symmetric covariant tensor-valued functions.
They must express as linear combinations of more simple L-functions. To find
the coefficients of the above combinations, we use MATLAB Symbolic Math
Toolbox. The results of calculations are given in Table 3.6.

The next step is to determine the two-point correlation tensor of the random
field e(x). We follow Section 3.6 and prove the following result. The two-point
correlation tensor has the form

〈e(x), e(x)〉 =
1
4π

∫ ∞

0

∫ 2π

0

∫ π

0

ei(p,y−x)f(p) sin(θp) dθp dϕp dΦ(λ),

where f(p) is a measurable function on R̂3 taking values in the set of all
symmetric non-negative-definite operators on S2(R3) ⊗ R3 with unit trace and
satisfying

f(gp) = S2(ρ(g))f(p), p ∈ R̂3, g ∈ O(3),

and Φ is a finite measure on [0,∞). Exactly as in Section 3.6, we prove that

f(0) =
5∑

n0=1

T ρ0,n0,0f0,n0(0).

The results of calculations are given in Table 3.7.
Introduce the following notation.

u1(0) =
1√
3
f0,1(0) +

2
√

2√
15
f0,2(0) +

4
5
√

3
f0,3(0) +

6
5
√

7
f0,5(0),

u2(0) =
2√
3
f0,1(0) − 2

√
2√

15
f0,2(0) +

2
5
√

3
f0,3(0) +

2√
5
f0,4(0)

+
8

5
√

7
f0,5(0),

u3(0) =
3
√

3
5
f0,3(0) +

1√
5
f0,4(0) +

16
5
√

7
f0,5(0),

u4(0) =
2√
5
f0,4(0) +

1√
7
f0,5(0),

u5(0) =
√

3
10
f0,3(0) − 1

6
√

5
f0,4(0) − 2

15
√

7
f0,5(0).
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Table 3.6 M-functions expressed as linear combinations of L-functions.

M-function Expresses as

M
ρ0,1
ijki′j′k′

1
3
√

3
L1

M
ρ0,2
ijki′j′k′ −

√
2

3
√

15
L1 + 1

2
√

30
L3

M
ρ0,3
ijki′j′k′

1
15

√
3
L1 − 1

10
√

3
L3 +

√
3

20
L4

M
ρ0,4
ijki′j′k′ − 1

3
√

5
L1 + 1

3
√

5
L2 + 1

6
√

5
L3 − 1

12
√

5
L4 − 1

6
√

5
L5

M
ρ0,5
ijki′j′k′ − 1

15
√

7
L1 + 1

6
√

7
L2 − 1

15
√

7
L3 − 1

15
√

7
L4 + 1

6
√

7
L5

M
ρ2,1
ijki′j′k′ (p) − 1

3
√

6
L1 + 1√

6‖p‖2 L
6(p)

M
ρ2,2
ijki′j′k′ (p) 1

3
√

15
L1 − 1

4
√

15
L3 − 1√

15‖p‖2 L
6(p) +

√
3

4
√

5‖p‖2 L
9(p)

M
ρ2,3
ijki′j′k′ (p) − 1

15
√

6
L1 + 1

10
√

6
L3 −

√
3

20
√

2
L4 + 1

5
√

6‖p‖2 L
6(p)

−
√

3
10

√
2‖p‖2 L

9(p) + 3
√

3
20

√
2‖p‖2 L

10(p)

M
ρ2,4
ijki′j′k′ (p) − 1

3
L1 + 1

12
L3 + 1

3‖p‖2 L
6(p) + 1

3‖p‖2 L
7(p) − 1

12‖p‖2 L
9(p) − 1

6‖p‖2 L
11(p)

M
ρ2,5
ijki′j′k′ (p) − 1

3
√

35
L1 − 1

6
√

35
L3 − 2

3
√

35‖p‖2 L
6(p) +

√
5

6
√

7‖p‖2 L
7(p)

− 1
3
√

35‖p‖2 L
9(p) +

√
5

6
√

7‖p‖2 L
11(p)

M
ρ2,6
ijki′j′k′ (p) − 1

3
√

14
L1 + 1

3
√

14
L2 + 1

6
√

14
L3 − 1

12
√

14
L4 − 1

6
√

14
L5

+ 1√
14‖p‖2 L

6(p) − 1√
14‖p‖2 L

8(p) − 1
2
√

14‖p‖2 L
9(p)

+ 1
4
√

14‖p‖2 L
10(p) − 1

2
√

14‖p‖2 L
12(p) + 1

2
√

14‖p‖2 L
15(p)

M
ρ2,7
ijki′j′k′ (p) − 2

3
√

5
L1 + 1

2
√

5
L2 + 1

6
√

5
L3 − 1

4
√

5
L5

+ 2
3
√

5‖p‖2 L
6(p) + 2

3
√

5‖p‖2 L
7(p) − 1

2
√

5‖p‖2 L
8(p)

− 1
6
√

5‖p‖2 L
9(p) − 1

3
√

5‖p‖2 L
11(p) + 1

4
√

5‖p‖2 L
12(p)

− 1
2
√

5‖p‖2 L
13(p) + 1

4
√

5‖p‖2 L
15(p)

M
ρ2,8
ijki′j′k′ (p) 16

15
√

7
L1 − 1

2
√

7
L2 − 31

60
√

7
L3 + 3

20
√

7
L4 + 1

4
√

7
L5

− 13
15

√
7‖p‖2 L

6(p) −
√

7
6‖p‖2 L

7(p) + 1
2
√

7‖p‖2 L
8(p)

+
√

7
15‖p‖2 L

9(p) − 9
20

√
7‖p‖2 L

10(p) + 1
3
√

7‖p‖2 L
11(p)

− 1
4
√

7‖p‖2 L
12(p) + 1

2
√

7‖p‖2 L
13(p) + 3

4
√

7‖p‖2 L
14(p) − 1

4
√

7‖p‖2 L
15(p)

M
ρ2,9
ijki′j′k′ (p) − 4

√
2

3
√

35
L1 +

√
7

6
√

10
L2 + 13

12
√

70
L3 −

√
5

12
√

14
L4 −

√
7

12
√

10
L5

+ 1√
70‖p‖2 L

6(p) +
√

7
2
√

10‖p‖2 L
7(p) + 1

2
√

70‖p‖2 L
8(p)

− 3
2
√

70‖p‖2 L
9(p) +

√
5

4
√

14‖p‖2 L
10(p) − 1

2
√

70‖p‖2 L
11(p)

− 1
4
√

70‖p‖2 L
12(p) −

√
2√

35‖p‖2 L
13(p) −

√
5

4
√

14‖p‖2 L
14(p) + 1√

70‖p‖2 L
15(p)

M
ρ2,10
ijki′j′k′ (p) − 11

10
√

21
L1 + 1

4
√

21
L2 + 3

√
3

10
√

7
L3 − 1

10
√

21
L4 −

√
3

4
√

7
L5

+ 13
10

√
21‖p‖2 L

6(p) + 1√
21‖p‖2 L

7(p) − 1
4
√

21‖p‖2 L
8(p)
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Table 3.6 (Cont.)

M-function Expresses as

−
√

7
10

√
3‖p‖2 L

9(p) +
√

3
10

√
7‖p‖2 L

10(p) − 1√
21‖p‖2 L

11(p)

+
√

3
4
√

7‖p‖2 L
12(p) − 1

4
√

21‖p‖2 L
13(p) − 1√

21‖p‖2 L
14(p) +

√
3

4
√

7‖p‖2 L
15(p)

M
ρ4,1
ijki′j′k′ (p) 1

2
√

105
L1 + 1

4
√

105
L3 −

√
5

2
√

21‖p‖2 L
6(p) −

√
5

4
√

21‖p‖2 L
7(p)

−
√

5
4
√

21‖p‖2 L
9(p) −

√
5

4
√

21‖p‖2 L
11(p) +

√
35

4
√

3‖p‖4 L
17(p)

M
ρ4,2
ijki′j′k′ (p) 2

√
2

3
√

35
L1 − 2

√
2

3
√

35
L2 −

√
2

3
√

35
L3 + 1

3
√

70
L4 +

√
2

3
√

35
L5

−
√

5
3
√

14‖p‖2 L
6(p) +

√
5

3
√

14‖p‖2 L
8(p) +

√
5

6
√

14‖p‖2 L
9(p)

−
√

5
12

√
14‖p‖2 L

10(p) − 5
√

5
12

√
14‖p‖2 L

12(p) +
√

35
12

√
2‖p‖2 L

13(p)

−
√

5
6
√

14‖p‖2 L
15(p) −

√
35

3
√

2‖p‖4 L
16(p) −

√
35

12
√

2‖p‖4 L
18(p) +

√
35

6
√

2‖p‖4 L
19(p)

M
ρ4,3
ijki′j′k′ (p) − 8

5
√

21
L1 +

√
3

4
√

7
L2 + 31

40
√

21
L3 − 3

√
3

40
√

7
L4 −

√
3

8
√

7
L5

+ 2√
21‖p‖2 L

6(p) +
√

7
4
√

3‖p‖2 L
7(p) −

√
3

4
√

7‖p‖2 L
8(p)

−
√

7
8
√

3‖p‖2 L
9(p) −

√
3

8
√

7‖p‖2 L
10(p) − 1

2
√

21‖p‖2 L
11(p)

+
√

3
8
√

7‖p‖2 L
12(p) −

√
3

4
√

7‖p‖2 L
13(p) − 3

√
3

8
√

7‖p‖2 L
14(p)

+
√

3
8
√

7‖p‖2 L
15(p) −

√
7

4
√

3‖p‖4 L
17(p) +

√
21

8‖p‖4 L
20(p)

M
ρ4,4
ijki′j′k′ (p) − 4

3
√

7
L1 +

√
7

12
L2 + 13

24
√

7
L3 − 5

24
√

7
L4 −

√
7

24
L5

+ 5
3
√

7‖p‖2 L
6(p) +

√
7

4‖p‖2 L
7(p) − 11

12
√

7‖p‖2 L
8(p)

− 11
24

√
7‖p‖2 L

9(p) + 1
24

√
7‖p‖2 L

10(p) − 1
4
√

7‖p‖2 L
11(p)

+ 11
24

√
7‖p‖2 L

12(p) − 5
12

√
7‖p‖2 L

13(p) − 5
8
√

7‖p‖2 L
14(p)

+ 5
24

√
7‖p‖2 L

15(p) −
√

7
3‖p‖4 L

16(p) −
√

7
4‖p‖4 L

17(p)

+
√

7
6‖p‖4 L

18(p) −
√

7
12‖p‖4 L

19(p) +
√

7
8‖p‖4 L

20(p)

M
ρ4,5
ijki′j′k′ (p) 13

30
√

154
L1 + 1

6
√

154
L2 − 17

30
√

154
L3 − 1

15
√

154
L4 +

√
2

3
√

77
L5

+ 2
√

2
3
√

77‖p‖2 L
6(p) − 1

2
√

154‖p‖2 L
7(p) − 2

√
2

3
√

77‖p‖2 L
8(p)

+
√

7
3
√

22‖p‖2 L
9(p) +

√
11

6
√

14‖p‖2 L
10(p) + 1

2
√

154‖p‖2 L
11(p)

−
√

11
6
√

14‖p‖2 L
12(p) − 2

√
2

3
√

77‖p‖2 L
13(p) + 1

2
√

154‖p‖2 L
14(p)

−
√

11
6
√

14‖p‖2 L
15(p) + 5

√
7

6
√

22‖p‖4 L
16(p) −

√
7√

22‖p‖4 L
17(p)

+ 5
√

7
6
√

22‖p‖4 L
18(p) + 5

√
7

6
√

22‖p‖4 L
19(p) −

√
7√

22‖p‖4 L
20(p)

M
ρ6,1
ijki′j′k′ (p) 3

√
3

4
√

77
L1 − 5

4
√

231
L2 − 5

4
√

231
L3 + 1

2
√

231
L4 + 1

2
√

231
L5

−
√

7
4
√

33‖p‖2 L
6(p) −

√
7

4
√

33‖p‖2 L
7(p) +

√
7

4
√

33‖p‖2 L
8(p)

+
√

7
4
√

33‖p‖2 L
9(p) +

√
7

4
√

33‖p‖2 L
11(p) +

√
7

4
√

33‖p‖2 L
13(p)

+
√

7
4
√

33‖p‖2 L
14(p) −

√
21

4
√

11‖p‖4 L
16(p) −

√
21

4
√

11‖p‖4 L
17(p)

−
√

21
4
√

11‖p‖4 L
18(p) −

√
21

4
√

11‖p‖4 L
19(p) −

√
21

4
√

11‖p‖4 L
20(p) +

√
231

4‖p‖6 L
21(p)
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Table 3.7 The non-zero elements of the matrix f(0).

ijk i′j′k′ fijki′j′k′ (0)

−1 − 1 − 1 −1 − 1 − 1 1
3
√

3
f0,1(0) + 2

√
2

3
√

15
f0,2(0) + 4

15
√

3
f0,3(0) + 2

5
√

7
f0,5(0)

111 111

000 000

−1 − 11 −1 − 11 1
3
√

3
f0,1(0) −

√
2

3
√

15
f0,2(0) + 1

15
√

3
f0,3(0)

11 − 1 11 − 1 + 1
3
√

5
f0,4(0) + 4

15
√

7
f0,5(0)

00 − 1 00 − 1

001 001

−1 − 10 −1 − 10

110 110

−100 −100
√

3
10

f0,3(0) + 1
6
√

5
f0,4(0) + 8

15
√

7
f0,5(0)

010 010

−11 − 1 −11 − 1

−111 −111

−10 − 1 −10 − 1

011 011

−101 −101 2
3
√

5
f0,4(0) + 1

3
√

7
f0,5(0)

01 − 1 01 − 1

−110 −110

−1 − 1 − 1 11 − 1 1
3
√

3
f0,1(0) + 1

3
√

30
f0,2(0) − 2

15
√

3
f0,3(0) − 1

5
√

7
f0,5(0)

−1 − 11 111

−1 − 1 − 1 00 − 1

001 111

−1 − 10 000

000 110

−1 − 1 − 1 −100 1
2
√

15
f0,2(0) +

√
2

5
√

3
f0,3(0) −

√
2

5
√

7
f0,5(0)

010 111

−1 − 1 − 1 −111

−11 − 1 111

−10 − 1 000

000 011

−1 − 11 010 1
2
√

15
f0,2(0) − 1

5
√

6
f0,3(0) + 1

3
√

10
f0,4(0)

−100 11 − 1 −
√

2
15

√
7
f0,5(0)

−11 − 1 001

−111 00 − 1

−1 − 10 011

−10 − 1 110

−1 − 11 −11 − 1 1
2
√

15
f0,2(0) − 1

5
√

6
f0,3(0) − 1

3
√

10
f0,4(0) + 4

√
2

15
√

7
f0,5(λ)

−111 11 − 1

−100 00 − 1
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Table 3.7 (Cont.)

ijk i′j′k′ fijki′j′k′ (0)

001 010

−1 − 10 −10 − 1

011 110

−1 − 11 001 1
3
√

3
f0,1(0) −

√
2

3
√

15
f0,2(0) + 1

15
√

3
f0,3(0)

00 − 1 11 − 1 − 1
3
√

5
f0,4(0) − 1

15
√

7
f0,5(0)

−1 − 10 110

−100 −111
√

3
10

f0,3(0) − 1
6
√

5
f0,4(0) − 2

15
√

7
f0,5(0)

−11 − 1 010

−10 − 1 011

−101 −110 − 1
3
√

5
f0,4(0) + 1

3
√

7
f0,5(0)

−110 01 − 1

−101 01 − 1

It is easy to check that the matrix f(0) is non-negative-definite with unit trace if
and only if u1(0) ≥ 0, . . . , u4(0) ≥ 0, u1(0)+ · · ·+u4(0) = 1 and |u5(0)| ≤ u3(0).
The convex compact C1, where the matrix f(0) can take values, is a simplex with
five vertices A1 = {u1(0) = 1}, A2 = {u2(0) = 1}, A3,4 = {u3(0) = 1, u5(0) =
±1} and A5 = {u4(0) = 1}. The corresponding non-zero values of the functions
f0,m(0) are as follows:

A1 : f0,1(0) =
1√
3
, f0,2(0) =

√
5√
6

A2 : f0,1(0) =
1√
3
, f0,2(0) = −

√
5

2
√

6
,

A3 : f0,1(0) = − 4
3
√

3
, f0,2(0) =

√
5

3
√

6
, f0,3(0) =

5
6
√

3
, f0,4(0) =

√
5

2
,

A4 : f0,2(0) = −
√

5√
6
, f0,3(0) = − 1

2
√

3
, f0,4(0) = −5

√
5

6
, f0,5(0) =

2
√

7
3
,

A5 : f0,1(0) = − 2
3
√

3
, f0,2(0)=

√
10

3
√

3
, f0,3(0)=

2
3
√

3
, f0,4(0)=

2
√

5
3
, f0,5(0)=−

√
7

3
.

Using Table 3.7, the reader can easily calculate all matrix entries of the matrices
A1–A5.

Exactly as in Section 3.6, we prove that

f(λ, 0, 0) =
3∑
�=0

q�∑
n=1

Tρ2�,n,0f2�,n(λ). (3.90)

The results of calculations are given in Table 3.8.
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Table 3.8 The non-zero elements of the matrix f(λ, 0, 0).

ijk i′j′k′ fijki′j′k′ (λ,0,0)

−1 − 1 − 1 −1 − 1 − 1 1
3
√

3
f0,1(λ) + 2

√
2

3
√

15
f0,2(λ) + 4

15
√

3
f0,3(λ)

111 111 + 2
5
√

7
f0,5(λ) − 1

3
√

6
f2,1(λ) − 2

3
√

15
f2,2(λ)

− 2
√

2
15

√
3
f2,3(λ) − 1√

35
f2,5(λ) − 2

5
√

7
f2,8(λ)

− 2
5
√

21
f2,10(λ) +

√
3

2
√

35
f4,1(λ) +

√
3

5
√

7
f4,3(λ)

+ 9
10

√
154

f4,5(λ) − 5
4
√

231
f6,1(λ)

−1 − 11 −1 − 11 1
3
√

3
f0,1(λ) −

√
2

3
√

15
f0,2(λ) + 1

15
√

3
f0,3(λ)

11 − 1 11 − 1 + 1
3
√

5
f0,4(λ) + 4

15
√

7
f0,5(λ) − 1

3
√

6
f2,1(λ)

+ 1
3
√

15
f2,2(λ) − 1

15
√

6
f2,3(λ) − 1

3
f2,4(λ)

− 1
3
√

35
f2,5(λ) + 1

3
√

14
f2,6(λ) + 1

3
√

5
f2,7(λ)

+ 1
15

√
7
f2,8(λ) − 1

3
√

70
f2,9(λ) −

√
3

5
√

7
f2,10(λ)

+ 1
2
√

105
f4,1(λ) − 2

√
2

3
√

35
f4,2(λ) − 1

10
√

21
f4,3(λ)

− 1
6
√

7
f4,4(λ) + 23

30
√

154
f4,5(λ) − 1

4
√

231
f6,1(λ)

−100 −100
√

3
10

f0,3(λ) + 1
6
√

5
f0,4(λ) + 8

15
√

7
f0,5(λ)

010 010 −
√

3
10

√
2
f2,3(λ) + 1

6
√

14
f2,6(λ) − 1

2
√

5
f2,7(λ)

+ 4
5
√

7
f2,8(λ) + 2

√
2

3
√

35
f2,9(λ) + 4

5
√

21
f2,10(λ)

−
√

2
3
√

35
f4,2(λ) − 2

√
3

5
√

7
f4,3(λ) + 2

3
√

7
f4,4(λ)

+ 4
√

2
15

√
77

f4,5(λ) − 4√
231

f6,1(λ)

−11 − 1 −11 − 1
√

3
10

f0,3(λ) + 1
6
√

5
f0,4(λ) + 8

15
√

7
f0,5(λ)

−111 −111 −
√

3
10

√
2
f2,3(λ) + 1

6
√

14
f2,6(λ) + 1

2
√

5
f2,7(λ) − 1

5
√

7
f2,8(λ)

+ 1
3
√

70
f2,9(λ) − 2

√
3

5
√

7
f2,10(λ) −

√
2

3
√

35
f4,2(λ)

+
√

3
10

√
7
f4,3(λ) + 1

6
√

7
f4,4(λ) + 23

15
√

154
f4,5(λ) − 1

2
√

231
f6,1(λ)

00 − 1 00 − 1 1
3
√

3
f0,1(λ) −

√
2

3
√

15
f0,2(λ) + 1

15
√

3
f0,3(λ)

001 001 + 1
3
√

5
f0,4(λ) + 4

15
√

7
f0,5(λ) − 1

3
√

6
f2,1(λ)

+ 1
3
√

15
f2,2(λ) − 1

15
√

6
f2,3(λ) + 1

3
f2,4(λ)

+ 4
3
√

35
f2,5(λ) + 1

3
√

14
f2,6(λ) − 1

3
√

5
f2,7(λ)

− 4
15

√
7
f2,8(λ) − 2

√
2

3
√

35
f2,9(λ) + 2

5
√

21
f2,10(λ)

− 2√
105

f4,1(λ) − 2
√

2
3
√

35
f4,2(λ) + 2

5
√

21
f4,3(λ)

− 2
3
√

7
f4,4(λ) + 2

√
2

15
√

77
f4,5(λ) − 2√

231
f6,1(λ)

−1 − 10 −1 − 10 1
3
√

3
f0,1(λ) −

√
2

3
√

15
f0,2(λ) + 1

15
√

3
f0,3(λ)

110 110 + 1
3
√

5
f0,4(λ) + 4

15
√

7
f0,5(λ) +

√
2

3
√

3
f2,1(λ)

− 2
3
√

15
f2,2(λ) +

√
2

15
√

3
f2,3(λ) − 1√

35
f2,5(λ)
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Table 3.8 (Cont.)

ijk i′j′k′ fijki′j′k′ (λ,0,0)

−
√

2
3
√

7
f2,6(λ) + 1

5
√

7
f2,8(λ) +

√
5

3
√

14
f2,9(λ)

+ 1
5
√

21
f2,10(λ) − 2√

105
f4,1(λ) + 1

3
√

70
f4,2(λ)

+ 2
5
√

21
f4,3(λ) − 1

3
√

7
f4,4(λ) − 17

30
√

154
f4,5(λ) +

√
3

2
√

77
f6,1(λ)

−10 − 1 −10 − 1
√

3
10

f0,3(λ) + 1
6
√

5
f0,4(λ) + 8

15
√

7
f0,5(λ)

011 011 +
√

3
5
√

2
f2,3(λ) − 1

3
√

14
f2,6(λ) − 3

5
√

7
f2,8(λ)

−
√

5
3
√

14
f2,9(λ) + 2

5
√

21
f2,10(λ) + 1

6
√

70
f4,2(λ)

− 2
√

3
5
√

7
f4,3(λ) + 1

3
√

7
f4,4(λ) − 17

15
√

154
f4,5(λ) +

√
3√
77

f6,1(λ)

000 000 1
3
√

3
f0,1(λ) + 2

√
2

3
√

15
f0,2(λ) + 4

15
√

3
f0,3(λ)

+ 2
5
√

7
f0,5(λ) +

√
2

3
√

3
f2,1(λ) + 4

3
√

15
f2,2(λ)

+ 4
√

2
15

√
3
f2,3(λ) + 2√

35
f2,5(λ) + 4

5
√

7
f2,8(λ)

+ 4
5
√

21
f2,10(λ) + 4√

105
f4,1(λ) + 8

5
√

21
f4,3(λ)

+ 6
√

2
5
√

77
f4,5(λ) + 4√

231
f6,1(λ)

−101 −101 2
3
√

5
f0,4(λ) + 1

3
√

7
f0,5(λ) +

√
2

3
√

7
f2,6(λ)

01 − 1 01 − 1 −
√

5
3
√

14
f2,9(λ) + 19

6
√

70
f4,2(λ) + 1

3
√

7
f4,4(λ)

−
√

7
3
√

22
f4,5(λ) + 1√

231
f6,1(λ)

−110 −110 2
3
√

5
f0,4(λ) + 1

3
√

7
f0,5(λ) − 2

√
2

3
√

7
f2,6(λ) +

√
10

3
√

7
f2,9(λ)

+
√

2
3
√

35
f4,2(λ) − 2

3
√

7
f4,4(λ) −

√
7

3
√

22
f4,5(λ) + 1√

231
f6,1(λ)

−1 − 1 − 1 11 − 1 1
3
√

3
f0,1(λ) + 1

3
√

30
f0,2(λ) − 2

15
√

3
f0,3(λ)

−1 − 11 111 − 1
5
√

7
f0,5(λ) − 1

3
√

6
f2,1(λ) − 1

6
√

15
f2,2(λ)

+
√

2
15

√
3
f2,3(λ) − 1

6
f2,4(λ) − 2

3
√

35
f2,5(λ)

− 1
3
√

5
f2,7(λ) + 1

30
√

7
f2,8(λ) − 1

2
√

70
f2,9(λ)

+
√

7
10

√
3
f2,10(λ) + 1√

105
f4,1(λ) − 1

20
√

21
f4,3(λ)

− 1
4
√

7
f4,4(λ) −

√
7

10
√

22
f4,5(λ) − 1

4
√

231
f6,1(λ)

−1 − 1 − 1 −100 1
2
√

15
f0,2(λ) +

√
2

5
√

3
f0,3(λ) −

√
2

5
√

7
f0,5(λ)

010 111 − 1
2
√

30
f2,2(λ) − 1

5
√

3
f2,3(λ) − 1

6
√

2
f2,4(λ)

+ 2
√

2
3
√

35
f2,5(λ) − 1

3
√

10
f2,7(λ) +

√
7

30
√

2
f2,8(λ)

− 1
4
√

35
f2,9(λ) −

√
3

5
√

14
f2,10(λ) −

√
2√

105
f4,1(λ)

−
√

7
20

√
6
f4,3(λ) − 1

4
√

14
f4,4(λ) − 1

5
√

77
f4,5(λ) +

√
3√

154
f6,1(λ)

−1 − 1 − 1 −111 1
2
√

15
f0,2(λ) +

√
2

5
√

3
f0,3(λ) −

√
2

5
√

7
f0,5(λ)
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Table 3.8 (Cont.)

ijk i′j′k′ fijki′j′k′ (λ,0,0)

−11 − 1 111 − 1
2
√

30
f2,2(λ) − 1

5
√

3
f2,3(λ) + 1

6
√

2
f2,4(λ)

− 1
3
√

70
f2,5(λ) + 1

3
√

10
f2,7(λ) − 13

30
√

14
f2,8(λ)

+ 1
4
√

35
f2,9(λ) +

√
7

5
√

6
f2,10(λ) + 1

2
√

210
f4,1(λ)

+ 13
20

√
42

f4,3(λ) + 1
4
√

14
f4,4(λ) −

√
7

10
√

11
f4,5(λ) − 1

2
√

462
f6,1(λ)

−1 − 1 − 1 00 − 1 1
3
√

3
f0,1(λ) + 1

3
√

30
f0,2(λ) − 2

15
√

3
f0,3(λ)

001 111 − 1
5
√

7
f0,5(λ) − 1

3
√

6
f2,1(λ) − 1

6
√

15
f2,2(λ)

+
√

2
15

√
3
f2,3(λ) + 1

6
f2,4(λ) + 1

6
√

35
f2,5(λ) + 1

3
√

5
f2,7(λ)

+ 11
30

√
7
f2,8(λ) + 1

2
√

70
f2,9(λ) −

√
3

10
√

7
f2,10(λ) − 1

4
√

105
f4,1(λ)

− 11
20

√
21

f4,3(λ) + 1
4
√

7
f4,4(λ) − 1

5
√

154
f4,5(λ) +

√
3

2
√

77
f6,1(λ)

−1 − 11 010 1
2
√

15
f0,2(λ) − 1

5
√

6
f0,3(λ) + 1

3
√

10
f0,4(λ)

−100 11 − 1 −
√

2
15

√
7
f0,5(λ) − 1

2
√

30
f2,2(λ) + 1

10
√

3
f2,3(λ)

− 1
6
√

2
f2,4(λ) + 2

√
2

3
√

35
f2,5(λ) + 1

6
√

7
f2,6(λ)

− 1
3
√

10
f2,7(λ) − 11

30
√

14
f2,8(λ) +

√
7

12
√

5
f2,9(λ)

− 1
5
√

42
f2,10(λ) −

√
2√

105
f4,1(λ) − 2

3
√

35
f4,2(λ)

+ 11
20

√
42

f4,3(λ) +
√

7
12

√
2
f4,4(λ) − 1

15
√

77
f4,5(λ) + 1√

462
f6,1(λ)

−1 − 11 −11 − 1 1
2
√

15
f0,2(λ) − 1

5
√

6
f0,3(λ) − 1

3
√

10
f0,4(λ)

−111 11 − 1 + 4
√

2
15

√
7
f0,5(λ) − 1

2
√

30
f2,2(λ) + 1

10
√

3
f2,3(λ)

+ 1
6
√

2
f2,4(λ) − 1

3
√

70
f2,5(λ) − 1

6
√

7
f2,6(λ)

−
√

2
3
√

5
f2,7(λ) − 1

30
√

14
f2,8(λ) − 1

12
√

35
f2,9(λ)

−
√

6
5
√

7
f2,10(λ) + 1

2
√

210
f4,1(λ) + 2

3
√

35
f4,2(λ)

+ 1
20

√
42

f4,3(λ) − 1
12

√
14

f4,4(λ) + 23
30

√
77

f4,5(λ) − 1
2
√

462
f6,1(λ)

−1 − 11 001 1
3
√

3
f0,1(λ) −

√
2

3
√

15
f0,2(λ) + 1

15
√

3
f0,3(λ)

00 − 1 11 − 1 − 1
3
√

5
f0,4(λ) − 1

15
√

7
f0,5(λ) − 1

3
√

6
f2,1(λ)

+ 1
3
√

15
f2,2(λ) − 1

15
√

6
f2,3(λ) + 1

2
√

35
f2,5(λ)

− 1
3
√

14
f2,6(λ) − 1

10
√

7
f2,8(λ) +

√
5

6
√

14
f2,9(λ)

− 1
10

√
21

f2,10(λ)
√

3
4
√

35
f4,1(λ) + 2

√
2

3
√

35
f4,2(λ)

+
√

3
20

√
7
f4,3(λ) + 5

12
√

7
f4,4(λ) − 1

15
√

154
f4,5(λ) + 1

2
√

231
f6,1(λ)

−100 −111
√

3
10

f0,3(λ) − 1
6
√

5
f0,4(λ) − 2

15
√

7
f0,5(λ)

−11 − 1 010 −
√

3
10

√
2
f2,3(λ) − 1

6
√

14
f2,6(λ) + 3

10
√

7
f2,8(λ)

−
√

5
6
√

14
f2,9(λ) − 1

5
√

21
f2,10(λ) +

√
2

3
√

35
f4,2(λ)

− 3
√

3
20

√
7
f4,3(λ) − 5

12
√

7
f4,4(λ) −

√
2

15
√

77
f4,5(λ) + 1√

231
f6,1(λ)
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Table 3.8 (Cont.)

ijk i′j′k′ fijki′j′k′ (λ,0,0)

−100 00 − 1 1
2
√

15
f0,2(λ) − 1

5
√

6
f0,3(λ) − 1

3
√

10
f0,4(λ)

001 010 + 4
√

2
15

√
7
f0,5(λ) − 1

2
√

30
f2,2(λ) + 1

10
√

3
f2,3(λ)

− 1
6
√

2
f2,4(λ) + 2

√
2

3
√

35
f2,5(λ) − 1

6
√

7
f2,6(λ)

+
√

2
3
√

5
f2,7(λ) +

√
2

15
√

7
f2,8(λ) − 1

3
√

35
f2,9(λ)

+ 2
√

2
5
√

21
f2,10(λ) −

√
2√

105
f4,1(λ) + 2

3
√

35
f4,2(λ)

− 1
5
√

42
f4,3(λ) − 1

3
√

14
f4,4(λ) + 4

15
√

77
f4,5(λ) − 2

√
2√

231
f6,1(λ)

−11 − 1 001 1
2
√

15
f0,2(λ) − 1

5
√

6
f0,3(λ) + 1

3
√

10
f0,4(λ)

−111 00 − 1 −
√

2
15

√
7
f0,5(λ) − 1

2
√

30
f2,2(λ) + 1

10
√

3
f2,3(λ)

+ 1
6
√

2
f2,4(λ) − 1

3
√

70
f2,5(λ) + 1

6
√

7
f2,6(λ)

+ 1
3
√

10
f2,7(λ) +

√
7

15
√

2
f2,8(λ) − 1

6
√

35
f2,9(λ)

− 1
5
√

42
f2,10(λ) + 1

2
√

210
f4,1(λ) − 2

3
√

35
f4,2(λ)

−
√

7
10

√
6
f4,3(λ) − 1

6
√

14
f4,4(λ) − 1

15
√

77
f4,5(λ) + 1√

462
f6,1(λ)

−1 − 10 −10 − 1 1
2
√

15
f0,2(λ) − 1

5
√

6
f0,3(λ) − 1

3
√

10
f0,4(λ)

011 110 + 4
√

2
15

√
7
f0,5(λ) + 1√

30
f2,2(λ) − 1

5
√

3
f2,3(λ)

− 1√
70

f2,5(λ) + 1
3
√

7
f2,6(λ) − 1

10
√

14
f2,8(λ)

+
√

5
12

√
7
f2,9(λ) +

√
2

5
√

21
f2,10(λ) −

√
2√

105
f4,1(λ)

− 1
6
√

35
f4,2(λ) − 1

5
√

42
f4,3(λ) − 1

6
√

14
f4,4(λ)

− 17
30

√
77

f4,5(λ) +
√

3√
154

f6,1(λ)

−1 − 10 000 1
3
√

3
f0,1(λ) + 1

3
√

30
f0,2(λ) − 2

15
√

3
f0,3(λ)

000 110 − 1
5
√

7
f0,5(λ) +

√
2

3
√

3
f2,1(λ) + 1

3
√

15
f2,2(λ)

− 2
√

2
15

√
3
f2,3(λ) + 1

2
√

35
f2,5(λ) − 2

5
√

7
f2,8(λ)

− 2
5
√

21
f2,10(λ) + 1√

105
f4,1(λ) − 4

5
√

21
f4,3(λ)

− 3
√

2
5
√

77
f4,5(λ) − 2√

231
f6,1(λ)

−1 − 10 011 1
2
√

15
f0,2(λ) − 1

5
√

6
f0,3(λ) + 1

3
√

10
f0,4(λ)

−10 − 1 110 −
√

2
15

√
7
f0,5(λ) + 1√

30
f2,2(λ) − 1

5
√

3
f2,3(λ)

− 1√
70

f2,5(λ) − 1
3
√

7
f2,6(λ) − 1

10
√

14
f2,8(λ)

−
√

5
12

√
7
f2,9(λ) +

√
2

5
√

21
f2,10(λ) −

√
2√

105
f4,1(λ)

+ 1
6
√

35
f4,2(λ) − 1

5
√

42
f4,3(λ) + 1

6
√

14
f4,4(λ)

+ 53
30

√
77

f4,5(λ) + 1√
462

f6,1(λ)

−1 − 10 110 1
3
√

3
f0,1(λ) −

√
2

3
√

15
f0,2(λ) + 1

15
√

3
f0,3(λ)

− 1
3
√

5
f0,4(λ) − 1

15
√

7
f0,5(λ) +

√
2

3
√

3
f2,1(λ)
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Table 3.8 (Cont.)

ijk i′j′k′ fijki′j′k′ (λ,0,0)

− 2
3
√

15
f2,2(λ) +

√
2

15
√

3
f2,3(λ) − 1√

35
f2,5(λ)

+
√

2
3
√

7
f2,6(λ) + 1

5
√

7
f2,8(λ) −

√
5

3
√

14
f2,9(λ)

+ 1
5
√

21
f2,10(λ) − 2√

105
f4,1(λ) − 1

3
√

70
f4,2(λ)

+ 2
5
√

21
f4,3(λ) + 1

3
√

7
f4,4(λ) + 53

30
√

154
f4,5(λ) + 1

2
√

231
f6,1(λ)

−10 − 1 000 1
2
√

15
f0,2(λ) +

√
2

5
√

3
f0,3(λ) −

√
2

5
√

7
f0,5(λ)

000 011 + 1√
30

f2,2(λ) + 2
5
√

3
f2,3(λ) − 1√

70
f2,5(λ)

+ 1
5
√

14
f2,8(λ) − 2

√
2

5
√

21
f2,10(λ) −

√
2√

105
f4,1(λ)

+
√

2
5
√

21
f4,3(λ) − 6

5
√

77
f4,5(λ) − 2

√
2√

231
f6,1(λ)

−10 − 1 011
√

3
10

f0,3(λ) − 1
6
√

5
f0,4(λ) − 2

15
√

7
f0,5(λ)

+
√

3
5
√

2
f2,3(λ) + 1

3
√

14
f2,6(λ) − 3

5
√

7
f2,8(λ)

+
√

5
3
√

14
f2,9(λ) + 2

5
√

21
f2,10(λ) − 1

6
√

70
f4,2(λ)

− 2
√

3
5
√

7
f4,3(λ) − 1

3
√

7
f4,4(λ) + 53

15
√

154
f4,5(λ) + 1√

231
f6,1(λ)

−101 −110 − 1
3
√

5
f0,4(λ) + 1

3
√

7
f0,5(λ) +

√
2

3
√

7
f2,6(λ)

−110 01 − 1 +
√

5
6
√

14
f2,9(λ) − 1

3
√

70
f4,2(λ) − 1

6
√

7
f4,4(λ) −

√
7

3
√

22
f4,5(λ) + 1√

231
f6,1(λ)

−101 01 − 1 − 1
3
√

5
f0,4(λ) + 1

3
√

7
f0,5(λ) − 2

√
2

3
√

7
f2,6(λ) −

√
5

3
√

14
f2,9(λ)

− 17
6
√

70
f4,2(λ) + 1

3
√

7
f4,4(λ) −

√
7

3
√

22
f4,5(λ) + 1√

231
f6,1(λ)

Introduce the following notation:

u1(λ) = 2f−1−1−1−1−1−1(λ), u2(λ) = 2f−1−11−1−11(λ),

u3(λ) = 2f−100−100(λ), u4(λ) = 2f−11−1−11−1(λ),

u5(λ) = 2f00−100−1(λ), u6(λ) = 2f−1−10−1−10(λ),

u7(λ) = 2(f−10−1−10−1(λ), u8(λ) = f000000(λ),

u9(λ) = 2f−101−101(λ) u10(λ) = u−110−110(λ),

u11(λ) = f−1−1−1−100(λ), u12(λ) = f−1−1−1−111(λ),

u13(λ) = f−1−1−100−1(λ), u14(λ) = f−1−11010(λ),

u15(λ) = f−1−1−111−1(λ), u16(λ) = f−10000−1(λ),

u17(λ) = f−1−10−10−1(λ), u18(λ) = f−1−10000(λ),

u19(λ) = f−1−10011(λ), u20(λ) = f−10−1000(λ),

u21(λ) = f−10−1011(λ).
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Then we have

f−1−1−111−1(λ) =
1
4
u1(λ) +

1
4
u2(λ) − 1

2
u4(λ),

f−1−11−11−1(λ) =
1

2
√

2
u1(λ) − 1

2
√

2
u2(λ) − u12(λ),

f−100−111(λ) =
1√
2
(u11(λ) − u14(λ)),

f−11−1001(λ) =
1√
2
(u13(λ) − u15(λ)),

f−1−10110(λ) =
1
2
u6(λ) − 4u10(λ),

f−101−110(λ) =
1√
2
(u17(λ) − u19(λ),

f−10101−1(λ) =
1
2
u7(λ) − 1

2
u9(λ) − u21(λ).

Put

vi(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ui(λ)
u1(λ)+···+u5(λ) , if 1 ≤ i ≤ 4

ui+6(λ)
u1(λ)+···+u5(λ) , if 5 ≤ i ≤ 10

ui−5(λ)
u6(λ)+u7(λ)+u8(λ) , if 11 ≤ i ≤ 12

ui+4(λ)
u6(λ)+u7(λ)+u8(λ) , if 13 ≤ i ≤ 17

u9(λ)
u9(λ)+u10(λ) , if i = 18.

(3.91)

We see that the set of extreme points of the convex compact C0 where the function
f(λ) may take values, consists of three connected components. The functions
v1(λ), . . . , v10(λ) (resp. v11(λ), . . . , v17(λ), resp. v18(λ)) are the coordinates on
the first (resp. second, resp. third) connected component.

The functions fi,j(λ) are expressed in terms of the functions uk(λ) according
to Table 3.9.

Substitute these values in (3.90) and take into account (3.20). We obtain the
matrix entries fijki′j′k′(p) expressed in terms of vi(λ) and Mρ2�,n�(p):

fiiji′j′k′(p) =
3∑
�=0

q�∑
n�=1

2�∑
m=−2�

Mρ2�,n�(p)
21∑
r=0

a�,n�,rvr(λ), (3.92)

where we put v0(λ) = 1. Using Table 3.9, we express fi···�′(p) in terms of ui(λ)
and Lqi···�′(p). Combining (2.48) and (3.22) and taking into account that the
O(3)-invariant measure on R̂3 has the form

dμ(p) =
1
4π

dS dν(λ),

where dS is the Lebesgue measure on the unit sphere S2, we obtain

〈e(x), e(y) =
1
4π

∫ ∞

0

∫
S2

ei(p,y−x)f(p) dS dν(λ).
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Table 3.9 The functions fi,j(λ) expressed as linear combinations of the
functions uk(λ).

fi,j(λ) Expresses as

f0,1(λ) 2
3
√

3
u1(λ) + 2

3
√

3
u2(λ) − 8

3
√

3
u4(λ) + 1

3
√

3
u5(λ) +

√
2

3
√

3
u6(λ)

+ 1
3
√

3
u8(λ) − 8

3
√

3
u10(λ) + 4

3
√

3
u13(λ) + 4

√
2

3
√

3
u15(λ) + 4

3
√

3
u18(λ)

f0,2(λ) 4
√

2
3
√

3
u1(λ) − 2

√
2

3
√

3
u2(λ) − 4

√
2

3
√

3
u4(λ) −

√
2

3
√

3
u5(λ) − 2

√
2

3
√

3
u6(λ)

+ 2
√

2
3
√

3
u8(λ) + 8

√
2

3
√

3
u10(λ) + 4√

15
u11(λ) +

√
10

3
√

3
u13(λ) + 4√

15
u14(λ)

− 14
3
√

15
u15(λ) + 4√

15
u16(λ) + 4√

15
u17(λ) + 2

√
2

3
√

3
u18(λ) + 4√

15
u19(λ)

+ 4√
15

u20(λ)

f0,3(λ) − 1
15

√
3
u1(λ) + 2

15
√

3
u2(λ) + 2

√
3

5
u3(λ) + 34

15
√

3
u4(λ) + 1

15
√

3
u5(λ)

+ 2
15

√
3
u6(λ) + 2

√
3

5
u7(λ) + 4

15
√

3
u8(λ) − 8

15
√

3
u10(λ) + 14

√
2

5
√

3
u11(λ)

+ 4
√

3
5

u12(λ) − 14
15

√
3
u13(λ) − 2

√
2√
3

u14(λ) + 2
√

2
3
√

3
u15(λ) − 4

√
2

5
√

3
u16(λ)

− 4
√

2
5
√

3
u17(λ) − 8

15
√

3
u18(λ) − 4

√
2

5
√

3
u19(λ) + 8

√
2

5
√

3
u20(λ) + 4

√
3

5
u21(λ)

f0,4(λ) − 1
3
√

5
u1(λ) + 2

3
√

5
u2(λ) + 2

3
√

5
u3(λ) + 2

3
√

5
u4(λ) + 1

3
√

5
u5(λ)

− 2
3
√

5
u7(λ) + 4√

5
u9(λ) + 16

3
√

5
u10(λ) − 2

√
2

3
√

5
u11(λ) + 4

3
√

5
u12(λ)

+ 2
3
√

5
u13(λ) + 2

√
2√
5

u14(λ) − 2
√

2√
5

u15(λ) − 4
√

2
3
√

5
u16(λ) − 4

√
2

3
√

35
u17(λ)

− 8
√

2
3
√

5
u18(λ) + 8

√
2

3
√

5
u20(λ) + 4

3
√

5
u21(λ)

f0,5(λ) 11
15

√
7
u1(λ) −

√
7

15
u2(λ) + 32

15
√

7
u3(λ) + 8

√
7

15
u4(λ) + 4

15
√

7
u5(λ)

+ 1
5
√

7
u6(λ) + 52

15
√

7
u7(λ) + 2

5
√

7
u8(λ) + 4

√
7

15
u10(λ) − 32

√
2

15
√

7
u11(λ)

− 8
√

7
15

u12(λ) − 16
15

√
7
u13(λ) + 32

√
2

15
√

7
u16(λ) + 52

√
2

15
√

7
u17(λ) − 4

5
√

7
u18(λ)

− 4
√

14
15

u19(λ) − 8
√

2
5
√

7
u20(λ) − 8

√
7

15
u21(λ)

f2,1(λ) −
√

2
3
√

3
u1(λ) −

√
2

3
√

3
u2(λ) + 4

√
2

3
√

3
u4(λ) − 1

3
√

6
u5(λ) + 2

√
2

3
√

3
u6(λ)

+
√

2
3
√

3
u8(λ) − 8

√
2

3
√

3
u10(λ) − 2

√
2

3
√

3
u13(λ) − 4

√
2

3
√

3
u15(λ) + 4

√
2

3
√

3
u18(λ)

f2,2(λ) − 4
3
√

15
u1(λ) + 2

3
√

15
u2(λ) + 4

3
√

15
u4(λ) + 1

3
√

15
u5(λ) − 4

3
√

15
u6(λ)

+ 4
3
√

15
u8(λ) + 16

3
√

15
u10(λ) − 2

√
2√

15
u11(λ) −

√
5

3
√

3
u13(λ) − 2

√
2√

15
u14(λ)

+ 7
√

2
3
√

15
u15(λ) − 2

√
2√

55
u17(λ) + 4

√
2√

15
u18(λ) + 4

3
√

15
u19(λ) + 4

√
2√

15
u20(λ)

f2,3(λ) 1
15

√
6
u1(λ) −

√
2

15
√

3
u2(λ) −

√
6

5
u3(λ) − 17

√
2

15
√

3
u4(λ) − 1

15
√

6
u5(λ)

+ 2
√

2
15

√
3
u6(λ) + 2

√
6

5
u7(λ) + 4

√
2

15
√

3
u8(λ) − 8

√
2

15
√

3
u10(λ) − 14

5
√

3
u11(λ)

− 2
√

6
5

u12(λ) + 7
√

2
15

√
3
u13(λ) + 3√

3
u15(λ) − 3

3
√

3
u16(λ) + 4

5
√

3
u17(λ)

− 8
5
√

3
u18(λ) − 8

√
2

15
√

3
u19(λ) + 16

5
√

3
u20(λ) + 4

√
6

5
u21(λ)

f2,4(λ) − 2
3
u2(λ) + 4

3
u4(λ) + 1

3
u5(λ) − 2

√
2

3
u11(λ) + u13(λ)

− 2
√

2
3

u14(λ) −
√

2
3

u15(λ) − 2
√

2
3

u16(λ)

f2,5(λ) − 2√
35

u1(λ) − 2
3
√

35
u2(λ) + 16

3
√

35
u4(λ) + 4

3
√

35
u5(λ) − 2√

35
u6(λ)

+ 2√
35

u8(λ) + 8√
35

u10(λ) + 16
√

2
3
√

35
u11(λ) + 16

√
2

3
√

35
u14(λ) − 8

5
√

21
u15(λ)

+ 16√
105

u16(λ) + 8
√

2
3
√

35
u15(λ) + 16

√
2

3
√

35
u16(λ) − 4

√
2√

35
u17(λ) + 2√

35
u18(λ)

− 4
√

2√
35

u19(λ) − 4
√

2√
35

u20(λ)
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Table 3.9 (Cont.)

fi,j(λ) Expresses as

f2,6(λ) − 1
3
√

14
u1(λ) +

√
2

3
√

7
u2(λ) +

√
2

3
√

7
u3(λ) +

√
2

3
√

7
u4(λ) + 1

3
√

14
u5(λ)

− 10
√

2
3
√

7
u7(λ) + 4

√
2√
7

u9(λ) − 16
√

2
3
√

7
u10(λ) − 2

3
√

7
u11(λ) + 2

√
2

3
√

7
u12(λ)

+
√

2
3
√

7
u13(λ) + 2√

7
u14(λ) − 2√

7
u15(λ) − 4

3
√

7
u16(λ) + 16

3
√

7
u17(λ)

− 16
3
√

7
u19(λ) + 20

√
2

3
√

7
u21(λ)

f2,7(λ) − 1√
5
u1(λ) + 2

3
√

5
u2(λ) − 2√

5
u3(λ) + 14

3
√

5
u4(λ) − 1

3
√

5
u5(λ)

− 4
√

2
3
√

5
u11(λ) + 4√

5
u12(λ) + 2√

5
u13(λ) − 4

√
2

3
√

5
u14(λ) − 2

√
2

3
√

5
u15(λ)

+ 8
√

2
3
√

5
u16(λ)

f2,8(λ) − 2
5
√

7
u1(λ) + 2

15
√

7
u2(λ) + 16

5
√

7
u3(λ) − 15

15
√

7
u4(λ) − 4

15
√

7
u5(λ)

+ 2
5
√

7
u6(λ) − 12

5
√

7
u7(λ) + 4

5
√

7
u8(λ) − 8

5
√

7
u10(λ) + 32

√
2

15
√

7
u11(λ)

− 8
5
√

7
u12(λ) + 12

5
√

7
u13(λ) − 8

√
2

3
√

7
u14(λ) − 4

√
2

3
√

7
u15(λ) + 8

√
2

15
√

7
u16(λ)

− 2
√

2
5
√

7
u17(λ) − 8

5
√

7
u18(λ) − 2

√
2

5
√

7
u19(λ) + 4

√
2

5
√

7
u20(λ) − 24

5
√

7
u21(λ)

f2,9(λ) −
√

2
3
√

35
u1(λ) −

√
2

3
√

35
u2(λ) + 8

√
2

3
√

35
u3(λ) + 8

√
2

3
√

35
u4(λ) − 2

√
2

3
√

35
u5(λ)

− 4
√

10
3
√

7
u7(λ) + 8

√
10

3
√

7
u10(λ) − 16

3
√

35
u11(λ) + 4

√
2

3
√

35
u12(λ) + 2

√
2

3
√

35
u13(λ)

+ 8√
35

u14(λ) + 4√
35

u15(λ) − 8
3
√

35
u16(λ) − 4

√
5

3
√

7
u17(λ) − 4

√
5

3
√

7
u19(λ)

+ 8
√

10
3
√

7
u21(λ)

f2,10(λ) − 3
√

3
10

√
7
u1(λ) + 13

10
√

21
u2(λ) + 16

5
√

21
u3(λ) − 52

5
√

21
u4(λ) + 2

5
√

21
u5(λ)

+ 2
5
√

21
u6(λ) + 8

5
√

21
u7(λ) + 4

5
√

21
u8(λ) − 8

5
√

21
u10(λ) − 16

√
2

5
√

21
u11(λ)

+ 52
5
√

21
u12(λ) − 8

5
√

21
u13(λ) + 16

√
2

5
√

21
u16(λ) + 8

√
2

5
√

21
u17(λ) − 8

5
√

21
u18(λ)

+ 8
√

2
5
√

21
u19(λ) − 16

√
2

5
√

21
u20(λ) + 16

5
√

21
u21(λ)

f4,1(λ)
√

3√
35

u1(λ) + 1√
105

u2(λ) − 8√
105

u4(λ) − 2√
105

u5(λ) − 4√
105

u6(λ)

+ 4√
105

u8(λ) + 16√
105

u10(λ) − 8
√

2√
105

u11(λ) − 8
√

2√
105

u14(λ) − 4
√

2√
105

u15(λ)

− 8
√

2√
105

u16(λ) − 8
√

2√
105

u17(λ) + 4√
105

u18(λ) − 8
√

2√
105

u19(λ) − 8
√

2√
105

u20(λ)

f4,2(λ) 2
√

2
3
√

35
u1(λ) − 4

√
2

3
√

35
u2(λ) + 4

√
2

3
√

35
u3(λ) − 4

√
2

3
√

35
u4(λ) − 2

√
2

3
√

35
u5(λ)

− 16
√

2
3
√

35
u7(λ) + 12

√
2√

35
u9(λ) + 8

√
2

3
√

35
u10(λ) + 8

3
√

35
u11(λ) − 8

√
2

3
√

35
u12(λ)

− 4
√

2
3
√

35
u13(λ) − 8√

35
u14(λ) + 8√

35
u15(λ) + 16

3
√

35
u16(λ) − 8

3
√

35
u17(λ)

+ 8
3
√

35
u19(λ) + 32

√
2

3
√

35
u21(λ)

f4,3(λ)
√

3
5
√

7
u1(λ) − 1

5
√

21
u2(λ) − 8

√
3

5
√

7
u3(λ) + 8

5
√

21
u4(λ) + 2

5
√

21
u5(λ)

+ 4
5
√

21
u6(λ) − 8

√
3

5
√

7
u7(λ) + 8

√
3

15
√

7
u8(λ) − 16

√
3

15
√

7
u10(λ) − 16

√
2

5
√

21
u11(λ)

+ 4
√

3
5
√

7
u13(λ) − 6

√
3

5
√

7
u14(λ) + 4

√
2

3
√

7
u15(λ) − 4

√
2

3
√

7
u16(λ) − 4

√
2

3
√

7
u17(λ)

− 16
√

3
15

√
7
u18(λ) − 4

√
2

5
√

21
u19(λ) + 8

√
2

5
√

21
u20(λ) − 16

√
3

5
√

7
u21(λ)

f4,4(λ) − 1
3
√

7
u1(λ) − 1

3
√

7
u2(λ) + 8

3
√

7
u3(λ) + 8

3
√

7
u4(λ) − 2

3
√

7
u5(λ)

+ 8
3
√

7
u7(λ) − 16

3
√

7
u10(λ) − 8

√
2

3
√

7
u11(λ) + 4

3
√

7
u12(λ) + 2

3
√

7
u13(λ)

+ 4
√

2√
7

u14(λ) + 2
√

2√
7

u15(λ) − 4
√

2
3
√

7
u16(λ) − 4

√
2

3
√

7
u17(λ) + 4

√
2

30
√

7
u19(λ)

− 16
3
√

7
u21(λ)
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Table 3.9 (Cont.)

fi,j(λ) Expresses as

f4,5(λ) 13
√

2
15

√
77

u1(λ) −
√

22
15

√
7
u2(λ) + 16

√
2

15
√

77
u3(λ) + 8

√
22

15
√

7
u4(λ) + 2

√
2

15
√

77
u5(λ)

+ 3
√

2
5
√

77
u6(λ) − 104

√
2

15
√

77
u7(λ) + 6

√
2

5
√

77
u8(λ) − 16

√
2

15
√

7
u10(λ) − 32

15
√

77
u11(λ)

− 8
√

22
15

√
7
u13(λ) − 8

√
2

15
√

77
u13(λ) + 32

15
√

77
u16(λ) − 208

15
√

77
u17(λ) − 12

√
2

5
√

77
u18(λ)

+ 32
√

11
15

√
7

u19(λ) − 48
5
√

77
u20(λ) + 32

√
22

15
√

7
u21(λ)

f6,1(λ) − 2√
231

u1(λ) − 16√
231

u3(λ) − 2√
231

u5(λ) + 2√
231

u6(λ) + 16√
231

u7(λ)

+ 4√
231

u8(λ) + 16
√

2√
231

u11(λ) + 8√
231

u13(λ) − 16
√

2√
231

u16(λ) + 16
√

2√
231

u17(λ)

− 8√
231

u18(λ) − 16
√

2√
231

u20(λ)

Substitute the obtained expression into the above display and use the Rayleigh
expansion (2.62). We obtain

〈e(x), e(y)〉ijki′j′k′ =
3∑

n=1

∫ ∞

0

21∑
q=1

Nnq(λ, ρ)L
q
iiki′j′k′(y − x) dΦn(λ), (3.93)

with
dΦ1(λ) = 2(u1(λ) + · · · + u5(λ)) dν(λ),

dΦ2(λ) = (2u6(λ) + 2u7(λ) + u8(λ)) dν(λ),

dΦ3(λ) = (2u9(λ) + u10(λ)) dν(λ).

Using Table 3.9, we obtain

2(u1(0) + · · · + u5(0)) =
2√
3
(f0,1(0) + f0,2(0)) +

2√
5
f0,4(0)

+
4√
7
f0,5(0),

2u6(0) + 2u7(0) + u8(0) =
1√
3
(f0,1(0) + f0,2(0)) +

1√
5
f0,4(0)

+
2√
7
f0,5(0).

(3.94)

To formulate the final result, we need to introduce more notation.

bi
′j′k′�′′m′′
ijk�′m′,n (λ) = i�

′−�′′√(2�′ + 1)(2�′′ + 1)
3∑
�=0

g
0[0,0]
2�[�′,�′′]

2�∑
m=−2�

g
−m[m′,m′′]
2�[�′,�′′]

×
q�∑

n�=1

Tρ2�,n�,m
ijki′j′k′

∑
r

a2�,n�,rvr(λ),

where the coefficients a2�,n�,r are defined in Equation (3.92) and where the index
r runs over the values 0, 1, . . . , 10 for n = 1, 0, 11, . . . , 17 for n = 2 and
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0, 18 for n = 3. Let < be the lexicographic order on quintuples (�,m, i, j, k).
Let L�

′m′i′j′k′
�mijk,n (λ) be infinite lower triangular matrices from Cholesky fac-

torisation of non-negative-definite matrices bi
′j′k′�′′m′′
ijk�′m′,n (λ) constructed in

Hansen (2010).

Theorem 34. The one-point correlation tensor of a homogeneous and
(O(3), 2ρ1 ⊕ ρ2 ⊕ ρ3)-isotropic random field e(x) is equal to 0. Its two-point
correlation tensor has the spectral expansion

〈e(x), e(y)〉ijki′j′k′ =
3∑

n=1

∫ ∞

0

21∑
q=1

Nnq(λ, ρ)L
q
iiki′j′k′(y − x) dΦn(λ),

where the functions Nnq(λ, ρ) are given in Table 3.10 and the functions Lqiiki′j′k′
are given in Equations (2.40), (2.44) and (2.45) and in Table 2.3. The measures
Φn(λ) satisfy the condition

Φ1({0}) = 2Φ2({0}). (3.95)

The spectral expansion of the field has the form

eijk(ρ, θ, ϕ) = 2
√
π

3∑
n=1

∞∑
�=0

�∑
m=−�

∫ ∞

0

j�(λρ)
∑

(�′,m′,i′,j′,k′)≤(�,m,i,j,k)

× L�
′m′i′j′k′
�mijk,n (λ) dZnijk�m(λ)Sm� (θ, ϕ),

where Sm� (θ, ϕ) are real-valued spherical harmonics, and where Zn
′

ijk�m are centred
uncorrelated real-valued random measures on [0,∞) with control measures Φn.

Proof. The functions Nnq(λ, ρ) have been calculated using the MATLAB
Symbolic Math Toolbox. Equation (3.95) follows from (3.94). The spectral
expansion of the field follows from Karhunen’s theorem.

3.8 The Case of Rank 4

Lomakin (1965) formulated a partial solution to the (O(3),S2(S2(ρ1)))-problem.
His formula is similar to (3.63), but contains 15 terms. In what follows we will
prove the correct version of his result with 29 terms.

Consider the representation (S2(S2(ρ1)),S2(S2(R3))) of the group O(3) as a
group action. The symmetry classes were calculated by Forte & Vianello (1996).
They are as follows: the triclinic class [G0] = [Zc2], the monoclinic class [G1] =
[Z2 ×Zc2], the orthotropic class [G2] = [D2 ×Zc2], the trigonal class [G3] = [D3 ×
Zc2], the tetragonal class [G4] = [D4 × Zc2], the transverse isotropic class [G5] =
[O(2)×Zc2], the cubic class [G6] = [O×Zc2] and the isotropic class [G7] = [O(3)].
The normalisers of their representatives are N(G0) = O(3), N(G1) = O(2)×Zc2,
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Table 3.10 The functions Nnq(λ, ρ).

n q Nnq(λ, ρ)

1 1 [ 1
35

+ 4
105

v2(λ) − 1
15

v3(λ) − 31
105

v4(λ) + 4
√

2
105

v5(λ) + 2
105

v7(λ)

− 4
√

2
15

v8(λ) + 2
√

2
5

v9(λ) − 4
√

2
105

v10(λ)]j0(λρ)

+[ 1
14

− 1
4
v1(λ) − 19

84
v2(λ) − 19

42
v3(λ) + 41

42
v4(λ) − 22

√
2

21
v5(λ)

+ 10
7

v6(λ) + 4
21

v7(λ) + 10
√

2
21

v8(λ) + 4
√

2
21

v10(λ)]j2(λρ)

+[ 24
385

− 13
385

v2(λ) − 96
385

v3(λ) − 288
385

v4(λ) + 292
√

2
385

v5(λ) − 4
7
v6(λ)

+ 36
385

v7(λ) − 44
√

2
35

v8(λ) − 2
√

2
5

v9(λ) + 148
√

2
385

v10(λ)]j4(λρ)

+[ 3
154

− 3
154

v2(λ) + 3
22

v3(λ) − 3
154

v4(λ) − 12
√

2
77

v5(λ) − 6
77

v7(λ)

+ 12
√

2
77

v10(λ)]j6(λρ)

1 2 [ 1
35

− 1
30

v1(λ) + 1
210

v2(λ) + 1
15

v3(λ) + 11
105

v4(λ) − 2
√

2
21

v5(λ)

+ 2
105

v7(λ) + 2
√

2
15

v8(λ) − 2
√

2
15

v9(λ) − 4
√

2
105

v10(λ)]j0(λρ)

+[ 1
42

+ 13
168

v1(λ) − 17
168

v2(λ) + 11
42

v3(λ) − 23
42

v4(λ) + 3
√

2
7

v5(λ)

− 5
7
v6(λ) − 1

21
v7(λ) − 5

√
2

21
v8(λ) −

√
2

21
v9(λ) − 4

√
2

21
v10(λ)]j2(λρ)

+[− 6
385

− 1
70

v1(λ) + 23
770

v2(λ) + 46
385

v3(λ) + 138
385

v4(λ) − 30
√

2
77

v5(λ)

+ 2
7
v6(λ) − 9

385
v7(λ) + 22

√
2

35
v8(λ) + 3

√
2

35
v9(λ) − 92

√
2

385
v10(λ)]j4(λρ)

+[− 5
462

+ 5
462

v2(λ) − 5
66

v3(λ) + 5
462

v4(λ) + 20
√

2
231

v5(λ) + 10
231

v7(λ)

− 20
√

2
231

v10(λ)]j6(λρ)

1 3 [− 1
210

+ 1
30

v1(λ) + 1
210

v2(λ) − 1
30

v3(λ) − 9
70

v4(λ) − 2
√

2
35

v5(λ)

+ 5
42

v7(λ) +
√

2
5

v8(λ) − 1
3
√

2
v9(λ) +

√
2

35
v10(λ)]j0(λρ)

+[− 1
42

+ 1
21

v1(λ) + 1
42

v2(λ) + 5
42

v3(λ) + 5
42

v4(λ) + 11
√

2
21

v5(λ)

− 5
7
v6(λ) + 1

42
v7(λ) − 2

√
2

7
v8(λ) − 1

21
√

2
v9(λ) − 2

√
2

21
v10(λ)]j2(λρ)

+[− 23
770

+ 1
70

v1(λ) + 23
770

v2(λ) + 59
770

v3(λ) + 199
770

v4(λ) − 139
√

2
385

v5(λ)

+ 2
7
v6(λ) − 4

77
v7(λ) + 18

√
2

35
v8(λ) +

√
2

7
v9(λ) − 81

√
2

385
v10(λ)]j4(λρ)

+[− 5
462

+ 5
462

v2(λ) − 5
66

v3(λ) + 5
462

v4(λ) + 20
√

2
231

v5(λ) + 10
231

v7(λ)

− 20
√

2
231

v10(λ)]j6(λρ)

1 4 [− 1
210

+ 1
210

v2(λ) + 1
30

v3(λ) + 1
14

v4(λ) + 6
√

2
35

v5(λ) + 2
15

v6(λ)

− 1
21

v7(λ) − 2
√

2
15

v8(λ) +
√

2
15

v9(λ) − 4
√

2
105

v10(λ)]j0(λρ)

+[− 1
21

v3(λ) − 1
21

v4(λ) − 1
3
√

2
v5(λ) + 1

21
v6(λ) − 1

42
v7(λ)

+ 1
3
√

2
v8(λ) + 1

21
√

2
v9(λ)]j2(λρ)

+[ 1
110

− 1
110

v2(λ) − 39
770

v3(λ) − 19
154

v4(λ) + 7
√

2
55

v5(λ) − 3
35

v6(λ)

+ 1
154

v7(λ) −
√

2
5

v8(λ) − 3
35

√
2
v9(λ) + 4

√
2

55
v10(λ)]j4(λρ)

+[ 1
231

− 1
231

v2(λ) + 1
33

v3(λ) − 1
231

v4(λ) − 8
√

2
231

v5(λ) − 4
231

v7(λ)

+ 8
√

2
231

v10(λ)]j6(λρ)

1 5 [− 1
210

+ 1
30

v1(λ) − 1
35

v2(λ) + 1
30

v3(λ) + 1
14

v4(λ) −
√

2
35

v5(λ)

− 2
15

v6(λ) − 1
21

v7(λ) −
√

2
15

v8(λ) +
√

2
15

v9(λ) + 2
√

2
21

v10(λ)]j0(λρ)

+[− 13
168

v1(λ) + 13
168

v2(λ) − 1
21

v3(λ) − 1
21

v4(λ) − 13
21

√
2
v5(λ)
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+ 2
3
v6(λ) − 1

42
v7(λ) + 5

21
√

2
v8(λ) + 1

21
√

2
v9(λ) + 4

√
2

21
v10(λ)]j2(λρ)

+[ 1
110

+ 1
70

v1(λ) − 9
385

v2(λ) − 39
770

v3(λ) − 19
154

v4(λ) + 71
√

2
385

v5(λ)

− 1
5
v6(λ) + 1

154
v7(λ) − 11

√
2

35
v8(λ) − 3

√
2

70
v9(λ) + 10

√
2

77
v10(λ)]j4(λρ)

+[ 1
231

− 1
231

v2(λ) + 1
33

v3(λ) − 1
231

v4(λ) − 8
√

2
231

v5(λ) − 4
231

v7(λ)

+ 8
√

2
231

v10(λ)]j6(λρ)

1 6 [− 1
42

+ 5
28

v1(λ) + 17
84

v2(λ) + 17
42

v3(λ) − 5
6
v4(λ) + 22

√
2

21
v5(λ)

− 10
7

v6(λ) − 4
21

v7(λ) − 2
√

2
7

v8(λ) + 4
√

2
7

v9(λ) − 4
√

2
21

v10(λ)]j2(λρ)

+[− 3
77

− 1
14

v1(λ) − 5
154

v2(λ) + 23
77

v3(λ) + 13
11

v4(λ) − 64
√

2
77

v5(λ)

+ 4
7
v6(λ) − 10

77
v7(λ) + 12

√
2

7
v8(λ) + 4

√
2

7
v9(λ) − 24

√
2

77
v10(λ)]j4(λρ)

+[− 1
66

+ 1
66

v2(λ) − 7
66

v3(λ) + 1
66

v4(λ) + 4
√

2
33

v5(λ) + 2
33

v7(λ)

− 4
√

2
33

v10(λ)]j6(λρ)

1 7 [− 2
21

+ 2
7
v1(λ) + 5

21
v2(λ) + 10

21
v3(λ) − 22

21
v4(λ) + 22

√
2

21
v5(λ)

− 10
7

v6(λ) − 4
21

v7(λ) − 4
√

2
7

v8(λ) − 2
√

2
7

v9(λ) − 4
√

2
21

v10(λ)]j2(λρ)

+[− 17
154

+ 1
28

v1(λ) + 1
308

v2(λ) + 57
154

v3(λ) + 149
154

v4(λ) − 64
√

2
77

v5(λ)

+ 4
7
v6(λ) − 10

77
v7(λ) + 10

√
2

7
v8(λ) + 5

√
2

7
v9(λ) − 24

√
2

77
v10(λ)]j4(λρ)

+[− 1
66

+ 1
66

v2(λ) − 7
66

v3(λ) + 1
66

v4(λ) + 4
√

2
33

v5(λ) + 2
33

v7(λ)

− 4
√

2
33

v10(λ)]j6(λρ)

1 8 [ 1
42

− 1
8
v1(λ) + 17

168
v2(λ) − 17

42
v3(λ) + 17

42
v4(λ) −

√
2

3
v5(λ)

+ 5
7
v6(λ) + 1

21
v7(λ) +

√
2

7
v8(λ) −

√
2

7
v9(λ) + 4

√
2

21
v10(λ)]j2(λρ)

+[ 3
77

− 3
77

v2(λ) − 23
77

v3(λ) − 47
77

v4(λ) + 6
√

2
11

v5(λ) − 2
7
v6(λ)

− 1
77

v7(λ) − 6
√

2
7

v8(λ) −
√

2
7

v9(λ) + 24
√

2
77

v10(λ)]j4(λρ)

+[ 1
66

− 1
66

v2(λ) + 7
66

v3(λ) − 1
66

v4(λ) − 4
√

2
33

v5(λ) − 2
33

v7(λ)

+ 4
√

2
33

v10(λ)]j4(λρ)

1 9 [ 1
42

− 1
28

v1(λ) − 5
84

v2(λ) − 5
42

v3(λ) − 1
42

v4(λ) − 10
√

2
21

v5(λ)

+ 4
7
v6(λ) + 5

42
v7(λ) + 4

√
2

7
v8(λ) − 1

7
√

2
v9(λ) + 4

√
2

21
v10(λ)]j2(λρ)

+[ 3
77

− 1
28

v1(λ) − 23
308

v2(λ) − 1
77

v3(λ) − 3
77

v4(λ) + 31
√

2
77

v5(λ)

− 3
7
v6(λ) + 9

154
v7(λ) − 3

√
2

7
v8(λ) − 1

7
√

2
v9(λ) + 24

√
2

77
v10(λ)]j4(λρ)

+[ 1
66

− 1
66

v2(λ) + 7
66

v3(λ) − 1
66

v4(λ) − 4
√

2
33

v5(λ) − 2
33

v7(λ)

+ 4
√

2
33

v10(λ)]j6(λρ)

1 10 [ 1
7
v3(λ) + 1

7
v4(λ) + 1√

2
v5(λ) − 1

7
v6(λ) + 1

14
v7(λ)

− 1√
2
v8(λ) − 1

7
√

2
v9(λ)]j2(λρ)

+[ 1
7
v3(λ) + 1

7
v4(λ) − 1

7
v6(λ) + 1

14
v7(λ) − 1

7
√

2
v9(λ)]j4(λρ)

1 11 [ 1
42

− 1
14

v1(λ) − 1
42

v2(λ) − 5
42

v3(λ) − 1
42

v4(λ) − 13
√

2
21

v5(λ)

+ 6
7
v6(λ) + 5

42
v7(λ) −

√
2

7
v8(λ) − 1

7
√

2
v9(λ) +

√
2

21
v10(λ)]j2(λρ)

+[ 3
77

− 1
14

v1(λ) − 3
77

v2(λ) − 1
77

v3(λ) − 3
77

v4(λ) + 20
√

2
77

v5(λ)
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− 1
7
v6(λ) + 9

154
v7(λ) −

√
2

7
v8(λ) − 1

7
√

2
v9(λ) + 13

√
2

77
v10(λ)]j4(λρ)

+[ 1
66

− 1
66

v2(λ) + 7
66

v3(λ) − 1
66

v4(λ) − 4
√

2
33

v5(λ) − 2
33

v7(λ)

+ 4
√

2
33

v10(λ)]j6(λρ)

1 12 [ 3
56

v1(λ) − 3
56

v2(λ) + 1
7
v3(λ) + 1

7
v4(λ) +

√
2

14
v5(λ)

− 4
7
v6(λ) + 1

14
v7(λ) + 1

7
√

2
v8(λ) − 1

7
√

2
v9(λ) − 2

√
2

7
v10(λ)]j2(λρ)

+[− 1
14

v1(λ) + 1
14

v2(λ) + 1
7
v3(λ) + 1

7
v4(λ) − 2

√
2

7
v5(λ) + 3

7
v6(λ)

+ 1
14

v7(λ) + 4
√

2
7

v8(λ) − 1
7
√

2
v9(λ) − 2

√
2

7
v10(λ)]j4(λρ)

1 13 [− 1
21

− 3
56

v1(λ) + 17
168

v2(λ) − 4
21

v3(λ) + 13
21

v4(λ) − 10
√

2
21

v5(λ)

+ 5
7
v6(λ) + 1

21
v7(λ) + 2

√
2

7
v8(λ) +

√
2

7
v9(λ) + 4

√
2

21
v10(λ)]j2(λρ)

+[− 5
154

+ 1
14

v1(λ) − 3
77

v2(λ) − 13
154

v3(λ) − 61
154

v4(λ) + 31
√

2
77

v5(λ)

− 2
7
v6(λ) − 1

77
v7(λ) − 5

√
2

7
v8(λ) +

√
2

7
v9(λ) + 24

√
2

77
v10(λ)]j4(λρ)

+[ 1
66

− 1
66

v2(λ) + 7
66

v3(λ) − 1
66

v4(λ) − 4
√

2
33

v5(λ) − 2
33

v7(λ)

+ 4
√

2
33

v10(λ)]j6(λρ)

1 14 [ 1
42

− 1
28

v1(λ) + 1
84

v2(λ) − 5
42

v3(λ) − 13
42

v4(λ) − 10
√

2
21

v5(λ)

+ 5
7
v6(λ) − 13

42
v7(λ) + 3

√
2

7
v8(λ) + 3

7
√

2
v9(λ) +

√
2

21
v10(λ)]j2(λρ)

+[ 3
77

− 1
28

v1(λ) − 1
308

v2(λ) − 1
77

v3(λ) − 25
77

v4(λ) + 31
√

2
77

v5(λ)

− 2
7
v6(λ) + 10

77
v7(λ) − 4

√
2

7
v8(λ) − 2

√
2

7
v9(λ) + 13

√
2

77
v10(λ)]j4(λρ)

+[ 1
66

− 1
66

v2(λ) + 7
66

v3(λ) − 1
66

v4(λ) − 4
√

2
33

v5(λ) − 2
33

v7(λ)

+ 4
√

2
33

v10(λ)]j6(λρ)

1 15 [ 5
56

v1(λ) − 5
56

v2(λ) + 5
√

2
14

v5(λ) − 5
7
v6(λ) − 3

√
2

14
v8(λ)

−
√

2
7

v10(λ)]j2(λρ)

+[− 1
28

v1(λ) + 1
28

v2(λ) −
√

2
7

v5(λ) + 2
7
v6(λ) + 2

7
v8(λ)

−
√

2
7

v10(λ)]j4(λρ)

1 16 [ 5
11

− 1
2
v1(λ) + 1

22
v2(λ) − 9

11
v3(λ) − 5

11
v4(λ) + 4

√
2

11
v5(λ)

+ 2
11

v7(λ) − 2
√

2v9(λ) − 4
√

2
11

v10(λ)]j4(λρ)

+[− 1
22

+ 1
22

v2(λ) − 7
22

v3(λ) + 1
22

v4(λ) + 4
√

2
11

v5(λ) + 2
11

v7(λ)

− 4
√

2
11

v10(λ)]j6(λρ)

1 17 [− 1
22

+ 1
4
v1(λ) + 13

44
v2(λ) − 7

22
v3(λ) − 43

22
v4(λ) + 4

√
2

11
v5(λ)

+ 2
11

v7(λ) − 2
√

2v8(λ) −
√

2v9(λ) − 4
√

2
11

v10(λ)]j4(λρ)

+[− 1
22

+ 1
22

v2(λ) − 7
22

v3(λ) + 1
22

v4(λ) + 4
√

2
11

v5(λ) + 2
11

v7(λ)

− 4
√

2
11

v10(λ)]j6(λρ)

1 18 [− 1
22

+ 1
22

v2(λ) + 15
22

v3(λ) + 23
22

v4(λ) − 7
√

2
11

v5(λ)

+ 2
11

v7(λ) +
√

2v8(λ) − 4
√

2
11

v10(λ)]j4(λρ)
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+[− 1
22

+ 1
22

v2(λ) − 7
22

v3(λ) + 1
22

v4(λ) + 4
√

2
11

v5(λ) + 2
11

v7(λ)

− 4
√

2
11

v10(λ)]j6(λρ)

1 19 [− 1
22

+ 1
4
v1(λ) − 9

44
v2(λ) − 7

22
v3(λ) + 1

22
v4(λ) + 4

√
2

11
v5(λ)

−v6(λ) − 7
22

v7(λ) −
√

2v8(λ) + 1√
2
v9(λ) + 7

√
2

11
v10(λ)]j4(λρ)

+[− 1
22

+ 1
22

v2(λ) − 7
22

v3(λ) + 1
22

v4(λ) + 4
√

2
11

v5(λ) + 2
11

v7(λ)

− 4
√

2
11

v10(λ)]j6(λρ)

1 20 [− 1
22

+ 1
22

v2(λ) − 7
22

v3(λ) + 1
22

v4(λ) − 7
√

2
11

v5(λ) + v6(λ)

− 7
22

v7(λ) +
√

2v8 + (λ) + 1√
2
v9(λ) − 4

√
2

11
v10(λ)]j4(λρ)

+[− 1
22

+ 1
22

v2(λ) − 7
22

v3(λ) + 1
22

v4(λ) + 4
√

2
11

v5(λ) + 2
11

v7(λ)

− 4
√

2
11

v10(λ)]j6(λρ)

1 21 [ 1
2
− 1

2
v1(λ) + 7

2
v1(λ) − 1

2
v3(λ) − 4

√
2v4(λ) − 2v6(λ)

+ 4
√

2v10(λ)]j6(λρ)

2 1 [ 1
105

+ 2
21

v11(λ) + 1
35

v12(λ) + 4
√

2
105

v13(λ) + 4
35

v14(λ) − 4
√

2
15

v15(λ)

− 4
√

2
105

v16(λ)]j0(λρ)

+[− 1
21

+ 2
21

v11(λ) − 1
7
v12(λ) + 8

√
2

21
v13(λ) + 2

7
v14(λ) − 8

√
2

21
v15(λ)

− 8
√

2
21

v16(λ) + 16
7

v17(λ)]j2(λρ)

+[− 37
385

+ 3
154

v11(λ) − 111
385

v12(λ) + 72
√

2
385

v13(λ) + 96
385

v14(λ) − 4
√

2
35

v15(λ)

− 72
√

2
385

v16(λ) + 16
7

v17(λ)]j4(λρ)

+[− 3
77

+ 3
154

v11(λ) − 9
77

v12(λ) − 12
√

2
77

v13(λ) + 6
77

v14(λ)

+ 12
√

2
77

v16(λ)]j6(λρ)

2 2 [ 1
105

− 1
210

v11(λ) + 1
35

v12(λ) − 2
√

2
21

v13(λ) − 2
105

v14(λ) + 2
√

2
15

v15(λ)

− 4
√

2
105

v16(λ)]j0(λρ)

+[ 1
21

− 1
42

v11(λ) + 1
7
v12(λ) − 2

√
2

7
v13(λ) − 2

21
v14(λ) + 4

√
2

21
v15(λ)

+ 2
√

2
21

v16(λ) − 8
7
v17(λ)]j2(λρ)

+[ 23
385

− 23
770

v11(λ) + 69
385

v12(λ) − 8
√

2
77

v13(λ) − 46
385

v14(λ) + 2
√

2
35

v15(λ)

+ 18
√

2
385

v16(λ) − 8
7
v17(λ)]j4(λρ)

+[ 5
231

− 5
462

v11(λ) + 5
77

v12(λ) + 20
√

2
231

v13(λ) − 10
231

v14(λ)

− 20
√

2
231

v16(λ)]j6(λρ)

2 3 [ 1
105

− 4
105

v11(λ) − 11
105

v12(λ) − 2
√

2
35

v13(λ) + 1
21

v14(λ) +
√

2
5

v15(λ)

+
√

2
35

v16(λ)]j0(λρ)

+[ 1
21

− 1
14

v11(λ) − 1
21

v12(λ) − 4
√

2
21

v13(λ) +
√

2
7

v15(λ) + 4
√

2
21

v16(λ)

− 8
7
v17(λ)]j2(λρ)

+[ 23
385

− 17
385

v11(λ) + 47
385

v12(λ) − 29
√

2
385

v13(λ) − 1
11

v14(λ) − 2
√

2
35

v15(λ)

+ 29
√

2
385

v16(λ) − 8
7
v17(λ)]j4(λρ)

+[ 5
231

− 5
462

v11(λ) + 5
77

v12(λ) + 20
√

2
231

v13(λ) − 10
231

v14(λ)

− 20
√

2
231

v16(λ)]j6(λρ)
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2 4 [ 1
105

− 1
210

v11(λ) + 1
35

v12(λ) −
√

2
35

v13(λ) − 2
105

v14(λ) −
√

2
15

v15(λ)

+ 2
√

2
21

v16(λ) + 2
15

v17(λ)]j0(λρ)

+[
√

2
21

v13(λ) − 2
√

2
21

v15(λ) +
√

2
21

v16(λ) + 10
21

v17(λ)]j2(λρ)

+[− 1
55

+ 1
110

v11(λ) − 3
55

v12(λ) + 16
√

2
385

v13(λ) + 2
55

v14(λ) −
√

2
35

v15(λ)

−
√

2
77

v16(λ) + 12
35

v17(λ)]j4(λρ)

+[− 2
231

+ 1
231

v11(λ) − 2
77

v12(λ) − 8
√

2
231

v13(λ) + 4
231

v14(λ)

+ 8
√

2
231

v16(λ)]j6(λρ)

2 5 [ 1
105

− 1
210

v11(λ) + 2
21

v12(λ) + 6
√

2
35

v13(λ) − 2
105

v14(λ) − 2
√

2
15

v15(λ)

− 4
√

2
105

v16(λ) − 2
17

v17(λ)]j0(λρ)

+[− 1
21

v12(λ) + 4
√

2
21

v13(λ) −
√

2
21

v15(λ) −
√

2
7

v16(λ) + 2
3
v17(λ)]j2(λρ)

+[− 1
55

+ 1
110

v11(λ) − 13
77

v12(λ) − 6
√

2
385

v13(λ) + 2
55

v14(λ) + 3
√

2
35

v15(λ)

− 27
√

2
385

v16(λ) + 4
5
v17(λ)]j4(λρ)

+[− 2
231

+ 1
231

v11(λ) − 2
77

v12(λ) − 8
√

2
231

v13(λ) + 4
231

v14(λ)

+ 8
√

2
231

v16(λ)]j6(λρ)

2 6 [ 1
21

− 8
21

v11(λ) + 1
7
v12(λ) − 8

√
2

21
v13(λ) − 8

21
v14(λ) + 4

√
2

7
v15(λ)

+ 8
√

2
21

v16(λ) − 16
7

v17(λ)]j2(λρ)

+[ 6
77

+ 8
77

v11(λ) + 18
77

v12(λ) − 20
√

2
77

v13(λ) − 34
77

v14(λ) + 4
√

2
7

v15(λ)

+ 20
√

2
77

v16(λ) − 16
7

v17(λ)]j4(λρ)

+[ 1
33

− 1
66

v11(λ) + 1
11

v12(λ) + 4
√

2
33

v13(λ) − 2
33

v14(λ)

− 4
√

2
33

v16(λ)]j6(λρ)

2 7 [ 1
21

+ 1
21

v11(λ) + 1
7
v12(λ) − 8

√
2

21
v13(λ) − 5

21
v14(λ) + 2

√
2

7
v15(λ)

+ 8
√

2
21

v16(λ) − 16
7

v17(λ)]j2(λρ)

+[ 6
77

+ 5
154

v11(λ) + 18
77

v12(λ) − 20
√

2
77

v13(λ) − 23
77

v14(λ) + 2
√

2
7

v15(λ)

+ 20
√

2
77

v16(λ) − 16
7

v17(λ)]j4(λρ)

+[ 1
33

− 1
66

v11(λ) + 1
11

v12(λ) + 4
√

2
33

v13(λ) − 2
33

v14(λ)

− 4
√

2
33

v16(λ)]j6(λρ)

2 8 [− 1
21

+ 1
42

v11(λ) − 1
7
v12(λ) + 8

√
2

21
v13(λ) + 2

21
v14(λ) − 2

√
2

7
v15(λ)

− 2
√

2
21

v16(λ) + 8
7
v17(λ)]j2(λρ)

+[− 6
77

+ 3
77

v11(λ) − 18
77

v12(λ) + 20
√

2
77

v13(λ) + 12
77

v14(λ) − 2
√

2
7

v15(λ)

+ 2
√

2
77

v16(λ) + 8
7
v17(λ)]j4(λρ)

+[− 1
33

+ 1
66

v11(λ) − 1
11

v12(λ) − 4
√

2
33

v13(λ) + 2
33

v14(λ)

+ 4
√

2
33

v16(λ)]j6(λρ)

2 9 [− 1
21

+ 2
21

v11(λ) − 1
7
v12(λ) + 2

√
2

21
v13(λ) − 1

21
v14(λ) − 4

√
2

7
v15(λ)

− 5
√

2
21

v16(λ) + 12
7

v17(λ)]j2(λρ)

+[− 6
77

+ 17
154

v11(λ) − 18
77

v12(λ) − 2
√

2
77

v13(λ) + 1
77

v14(λ) + 3
√

2
7

v15(λ)
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Table 3.10 (Cont.)

n q Nnq(λ, ρ)

− 9
√

2
77

v16(λ) + 12
7

v17(λ)]j4(λρ)

+[− 1
33

+ 1
66

v11(λ) − 1
11

v12(λ) − 4
√

2
33

v13(λ) + 2
33

v14(λ)

+ 4
√

2
33

v16(λ)]j6(λρ)

2 10 [−
√

2
7

v13(λ) + 2
√

2
7

v15(λ) −
√

2
7

v16(λ) − 10
7

v17(λ)]j2(λρ)

+[−
√

2
7

v13(λ) − 2
√

2
7

v15(λ) −
√

2
7

v16(λ) + 4
7
v17(λ)]j4(λρ)

2 11 [− 1
21

+ 2
21

v11(λ) + 1
7
v12(λ) + 5

√
2

21
v13(λ) − 1

21
v14(λ) +

√
2

7
v15(λ)

− 2
√

2
21

v16(λ) + 4
7
v17(λ)]j2(λρ)

+[− 6
77

+ 17
154

v11(λ) + 4
77

v12(λ) + 9
√

2
77

v13(λ) + 1
77

v14(λ) +
√

2
7

v15(λ)

+ 2
√

2
77

v16(λ) + 4
7
v17(λ)]j4(λρ)

+[− 1
33

+ 1
66

v11(λ) − 1
11

v12(λ) − 4
√

2
33

v13(λ) + 2
33

v14(λ)

+ 4
√

2
33

v16(λ)]j6(λρ)

2 12 [− 3
7
v12(λ) +

√
2

7
v13(λ) − 2

√
2

7
v15(λ) +

√
2

7
v16(λ) + 2

7
v17(λ)]j2(λρ)

+[ 4
7
v12(λ) +

√
2

7
v13(λ) − 2

√
2

7
v15(λ) +

√
2

7
v16(λ) − 12

7
v17(λ)]j4(λρ)

2 13 [− 1
21

+ 1
42

v11(λ) − 1
7
v12(λ) + 5

√
2

21
v13(λ) + 2

21
v14(λ) −

√
2

7
v15(λ)

− 2
√

2
21

v16(λ) + 8
7
v17(λ)]j2(λρ)

+[− 6
77

+ 3
77

v11(λ) − 18
77

v12(λ) + 9
√

2
77

v13(λ) + 12
77

v14(λ) −
√

2
7

v15(λ)

+ 2
√

2
77

v16(λ) + 8
7
v17(λ)]j4(λρ)

+[− 1
33

+ 1
66

v11(λ) − 1
11

v12(λ) − 4
√

2
33

v13(λ) + 2
33

v14(λ)

+ 4
√

2
33

v16(λ)]j6(λρ)

2 14 [− 1
21

+ 1
42

v11(λ) + 1
7
v12(λ) + 5

√
2

21
v13(λ) + 2

21
v14(λ) − 5

√
2

21
v16(λ)

+ 8
7
v17(λ)]j2(λρ)

+[− 6
77

+ 3
77

v11(λ) + 4
77

v12(λ) + 9
√

2
77

v13(λ) + 12
77

v14(λ) − 9
√

2
77

v16(λ)

+ 8
7
v17(λ)]j4(λρ)

+[− 1
33

+ 1
66

v11(λ) − 1
11

v12(λ) − 4
√

2
33

v13(λ) + 2
33

v14(λ)

+ 4
√

2
33

v16(λ)]j6(λρ)

2 15 [ 2
7
v12(λ) − 5

7
√

2
v13(λ) + 3

7
√

2
v15(λ) + 5

√
2

21
v16(λ) − 8

7
v17(λ)]j2(λρ)

+[+ 2
7
v12(λ) +

√
2

7
v13(λ) − 2

√
2

7
v15(λ) +

√
2

7
v16(λ) − 8

7
v17(λ)]j4(λρ)

2 16 [ 1
11

− 1
22

v11(λ) + 3
11

v12(λ) + 4
√

2
11

v13(λ) − 2
11

v14(λ)

− 4
√

2
11

v16(λ)]j4(λρ)

+[ 1
11

− 1
22

v11(λ) + 3
11

v12(λ) + 4
√

2
11

v13(λ) − 2
11

v14(λ)

− 4
√

2
11

v16(λ)]j6(λρ)

2 17 [ 1
11

− 6
11

v11(λ) + 3
11

v12(λ) + 4
√

2
11

v13(λ) + 9
11

v14(λ) − 2
√

2v15(λ)

− 4
√

2
11

v16(λ)]j4(λρ)

+[ 1
11

− 1
22

v11(λ) + 3
11

v12(λ) + 4
√

2
11

v13(λ) − 2
11

v14(λ)

− 4
√

2
11

v16(λ)]j6(λρ)
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Table 3.10 (Cont.)

n q Nnq(λ, ρ)

2 18 [ 1
11

− 1
22

v11(λ) + 3
11

v12(λ) − 7
√

2
11

v13(λ) − 2
11

v14(λ) +
√

2v15(λ)

− 4
√

2
11

v16(λ)]j4(λρ)

+[ 1
11

− 1
22

v11(λ) + 3
11

v12(λ) + 4
√

2
11

v13(λ) − 2
11

v14(λ)

− 4
√

2
11

v16(λ)]j6(λρ)

2 19 [ 1
11

− 1
22

v11(λ) − 19
11

v12(λ) − 7
√

2
11

v13(λ) − 2
11

v14(λ) +
√

2v15(λ)

− 4
√

2
11

v16(λ) + 4v17(λ)]j4(λρ)

+[ 1
11

− 1
22

v11(λ) + 3
11

v12(λ) + 4
√

2
11

v13(λ) − 2
11

v14(λ)

− 4
√

2
11

v16(λ)]j6(λρ)

2 20 [ 1
11

− 1
22

v11(λ) + 3
11

v12(λ) + 4
√

2
11

v13(λ) − 2
11

v14(λ) −
√

2v15(λ)

+ 7
√

2
11

v16(λ) − v17(λ)]j4(λρ)

+[ 1
11

− 1
22

v11(λ) + 3
11

v12(λ) + 4
√

2
11

v13(λ) − 2
11

v14(λ)

− 4
√

2
11

v16(λ)]j6(λρ)

2 21 [−1 + 1
2
v11(λ) − 3v12(λ) − 4

√
2v13(λ) + 2v14(λ)

+ 4
√

2v16(λ)]j6(λ)

3 1 [− 4
5

+ 8
15

v18(λ)]j0(λρ) + [ 4
7
− 8

21
v18(λ)]j2(λρ)

+[ 48
35

− 32
35

v18(λ)]j4(λρ)

3 2 [ 2
5
− 2

15
v18(λ)]j0(λρ) + [− 2

7
+ 2

21
v18(λ)]j2(λρ)

+[− 24
35

+ 8
35

v18(λ)]j4(λρ)

3 3 [ 4
15

− 2
15

v18(λ)]j0(λρ) + [− 4
21

+ 2
21

v18(λ)]j2(λρ)

+[− 16
35

+ 8
35

v18(λ)]j4(λρ)

3 4 [− 2
15

+ 1
15

v18(λ)]j0(λρ) + [ 2
21

− 1
21

v18(λ)]j2(λρ)

+[ 8
35

− 4
35

v18(λ)]j4(λρ)

3 5 − 2
15

j0(λρ) + 2
21

j2(λρ) + 8
35

j4(λρ)

3 6 [ 12
7

− 16
7

v18(λ)]j2(λρ) + [− 16
7

+ 12
7

v18(λ)]j4(λρ)

3 7 [− 12
7

+ 12
7

v18(λ)]j2(λρ) + [− 12
7

+ 12
7

v18(λ)]j4(λρ)

3 8 [− 6
7

+ 10
7

v18(λ)]j2(λρ) + [ 8
7
− 4

7
v18(λ)]j4(λρ)

3 9 2
7
v18(λ)j2(λρ) + 2

7
v18(λ)j4(λρ)

3 10 [− 2
7

+ 1
7
v18(λ)]j2(λρ) − [ 2

7
+ 1

7
v18(λ)]j4(λρ)

3 11 0

3 12 [− 2
7

+ 4
7
v18(λ)]j2(λρ) + [− 2

7
− 3

7
v18(λ)]j4(λρ)

3 13 [ 6
7
− 6

7
v18(λ)]j2(λρ) + [ 6

7
+ 1

7
v18(λ)]j4(λρ)

3 14 [ 4
7
− 4

7
v18(λ)]j2(λρ) + [ 4

7
− 4

7
v18(λ)]j4(λρ)

3 15 − 2
7
v18(λ)j2(λρ) − 2

7
v18(λ)j4(λρ)

3 16 −4v18(λ)j4(λρ)

3 17 [4 − 4v18(λ)]j4(λρ)

3 18 [−2 − v18(λ)]j4(λρ)

3 19 2v18(λ)j4(λρ)

3 20 0

3 21 0
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N(G2) = O × Zc2, N(G3) = D6 × Zc2, N(G4) = D8 × Zc2, N(G5) = O × Zc2,
N(G6) = O(2) × Zc2 and N(G7) = O(3).

The possibilities for the symmetry group are as follows. In the triclinic class,
there exist infinitely many groups between Zc2 and O(3), we choose G1 = Zc2
and G2 = O(3). Similarly, for the monoclinic class we choose G3 = Z2 ×Zc2 and
G4 = O(2) × Zc2. The possibilities for the orthotropic class are G5 = D2 × Zc2,
G6 = D4 × Zc2, G7 = D6 × Zc2, G8 = T × Zc2 and G9 = O × Zc2. In the trigonal
class, we choose G10 = D3 × Zc2 and G11 = D6 × Zc2. In the tetragonal class,
the possibilities are G12 = D4 × Zc2 and G13 = D8 × Zc2. In the three remaining
classes, the possibilities are G14 = O(2) × Zc2, G15 = O × Zc2 and G16 = O(3).

We have V = R3, G = O(3), V0 = S2(S2(R3)) and ρ0 = S2(S2(g)). We proceed
in steps.

For each symmetry class [Gj ], we have to describe the space V of the isotypic
component of the representation ρ0 that corresponds to the trivial represen-
tation of the group Gj acts. We perform this by introducing an orthonormal
basis T 1

ijkl, . . . , T dim V
ijkl . Any space V is a subspace of the space S2(S2(R3)). We

express the tensors T 1
ijkl, . . . , T dim V

ijkl in terms of the basis tensors of the space
S2(S2(R3)) given by Equations (3.65), (3.67), (3.66), (3.68) and (3.69); see also
Equation (3.62). The calculations are similar to those in Section 3.6.

All groups Gj are of type II. We formulate and prove only the cases of G =
D8 × Zc2 and G = O(3).

First, we determine a suitable basis in the space VD4×Zc
2 . According to Alt-

mann & Herzig (1994, Table 33.5), the restriction of the representation ρ1 of
the group O(3) to the subgroup D4 × Zc2 is equal to A2u ⊕ Eu. The represen-
tation A2u acts in the z-axis, while the representation Eu acts in the xy-plane.
Using Altmann & Herzig (1994, Table 33.8), we determine the structure of the
symmetric tensor square of the representation A2u ⊕ Eu:

S2(A2u ⊕ Eu) = 2A1g ⊕ Eg ⊕B1g ⊕B2g.

The first copy of the representation A1g acts in the one-dimensional space

generated by the matrix T 1 =
(

0 0 0
0 1 0
0 0 0

)
, the second copy in the space generated by

the matrix T 2 = 1√
2

(
1 0 0
0 0 0
0 0 1

)
. The representation Eg acts in the two-dimensional

space generated by the matrices T 3 = 1√
2

(
0 1 0
1 0 0
0 0 0

)
and T 4 = 1√

2

(
0 0 0
0 0 1
0 1 0

)
. The

representation B1g acts in the one-dimensional space generated by the matrix

T 5 = 1√
2

(
−1 0 0
0 0 0
0 0 1

)
, and the representation B2g in the space generated by

T 6 = 1√
2

(
0 0 1
0 0 0
1 0 0

)
. Using Altmann & Herzig (1994, Table 33.8) once more, we find

that the symmetric tensor square S2(S2(A2u⊕Eu)) contains six copies of the triv-
ial representation A1g of the group D4×Zc2, and they act in the one-dimensional
spaces generated by the rank 4 tensors
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T i = T i ⊗ T i, i = 1, 2, 5, 6,

T 3 =
1√
2
(T 1 ⊗ T 2 + T 2 ⊗ T 1),

T 4 =
1√
2
(T 3 ⊗ T 3 + T 4 ⊗ T 4).

Next, consider the group G = D8×Zc2. According to Altmann & Herzig (1994,
Table 37.5), the restriction of the representation ρ1 of the group O(3) to G is
equal to A2u ⊕ E1u. The representation A2u acts in the z-axis, while the repre-
sentation E1u acts in the xy-plane. Using Altmann & Herzig (1994, Table 33.8),
we determine the structure of the symmetric tensor square of the representation
A2u ⊕ E1u:

S2(A2u ⊕ E1u) = 2A1g ⊕E1g ⊕ E2g.

The first copy of the representation A1g acts in the one-dimensional space gen-
erated by the matrix T 1, the second copy in the space generated by T 2. The
representation E1g acts in the two-dimensional space generated by the matrices
T 3 and T 4, the representation E2g in the space generated by T 5 and T 6. Using
Altmann & Herzig (1994, Table 33.8) once more, we find the components of
the symmetric tensor square S2(S2(A2u ⊕ E1u)) that act in the space VD8×Zc

2 .
They are as follows: four copies of A1g that act in the spaces generated by the
tensors T̃ i = T i, 1 ≤ i ≤ 4, a copy of A1g that acts in the space generated
by T̃ 5 = 1√

2
(T 5 + T 6) and a copy of B2g that acts in the space generated by

T̃ 6 = 1√
2
(−T 5 + T 6).

By Lemma 1, we have ρ̃ = S2(5A1g ⊕ B2g). By Altmann & Herzig (1994,
Table 37.8), ρ̃ = 16A1g ⊕ 5B2g. We have to investigate the restrictions of the
non-trivial representation B2g to the stationary subgroups of various strata of
the orbit space R̂3/D8×Zc2. They are given by Equation 3.31. Using Altmann &
Herzig (1994, Table 37.9), we find that the restrictions of B2g to the stationary
subgroups of the strata (R̂3/D8 × Zc2)3, (R̂3/D8 × Zc2)4, (R̂3/D8 × Zc2)6 and
(R̂3/D8×Zc2)7 are trivial. On these strata, the function f0(p) takes values in the
set C0 of the symmetric non-negative-definite 6× 6 matrices with unit trace. We
divide the group D8 × Zc2 into two sets. On the set

G+ = {E,C+
4 , C

−
4 , C2, C

′′
21, C

′′
22, C

′′
23, C

′′
24, i, S

+
4 , S

−
4 , σh, σd1, σd2, σd3, σd4}

the representation B2g takes value 1. On the complement set G− = G \G+, the
above representation takes value −1. The spherical Bessel function has the form

j(p,y − x) = j+(p,y − x) + j−(p,y − x),

where

j±(p,y − x) =
1
32

∑
g∈G±

ei(gp,y−x).
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We calculate the matrix entries of the representation A2u ⊕ E1u, using the
Euler angles from Altmann & Herzig (1994, Table 37.1). Then, we calculate
the functions j±(p,y − x) and obtain

j+(p,y − x) =
1
8

cos(p3z3)[cos(p1z1 + p2z2) + cos(p1z2 − p2z1)]

+
1
4

cos
(
p1z1 − p2z2√

2

)
cos
(
p1z2 + p2z1√

2

)
cos(p3z3),

j−(p,y − x) =
1
8

cos(p3z3)[cos(p1z1 − p2z2) + cos(p1z2 + p2z1)]

+
1
4

cos
(
p1z2 − p2z1√

2

)
cos
(
p1z1 + p2z2√

2

)
cos(p3z3).

The contribution of the above strata to the two-point correlation tensor becomes∫
(R̂3/D8×Zc

2)3,4,6,7

(j+(p,y − x)f+
0 (p) + j−(p,y − x)f−0 (p)) dΦ(p),

where f+
0 (p) is a measurable function taking values in C0, and f−0 (p) is the

function f+
0 (p), where the matrix entries ((f+

0 )i6(p) and ((f+
0 )6i(p), 1 ≤ i ≤ 5,

are multiplied by −1.
On the rest of the strata, the function f1(p) takes values in the convex compact

set C1 of the symmetric non-negative-definite 6 × 6 matrices with unit trace
satisfying (f1)i6(p) = (f1)6i(p) = 0, 1 ≤ i ≤ 5. The contribution of the remaining
strata is ∫

(R̂3/D8×Zc
2)0−2,5

(j+(p,y − x) + j−(p,y − x))f1(p)) dΦ(p).

Theorem 35. The one-point correlation tensor of the homogeneous and (D8 ×
Zc2, 5A1g ⊕B2g)-isotropic random field C(x) is

〈C(x)〉 =
5∑

m=1

CmT̃
m, Cm ∈ R.

Its two-point correlation tensor is

〈C(x),C(y)〉 =
∫

(R̂3/D8×Zc
2)3,4,6,7

(j+(p,y − x)f+
0 (p)

+ j−(p,y − x)f−0 (p)) dΦ(p)

+
∫

(R̂3/D8×Zc
2)0−2,5

(j+(p,y − x)

+ j−(p,y − x))f1(p)) dΦ(p).
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The field has the form

C(x) =
5∑

m=1

CmT̃
m +

6∑
m=1

32∑
n=1

∫
(R̂3/D8×Zc

2)3,4,6,7

un(p,x) dZ0n
m (p)T̃m

+
6∑

m=1

32∑
n=1

∫
(R̂3/D8×Zc

2)0−2,5

un(p,x) dZ1n
m (p)T̃m,

(3.96)

where un(p,x), 1 ≤ n ≤ 4 (resp. 5 ≤ n ≤ 8, resp. 9 ≤ n ≤ 16, resp.
17 ≤ n ≤ 20, resp. 21 ≤ n ≤ 24, resp. 25 ≤ n ≤ 32) are different
products of sines and cosines of 1√

8
(p1x1 + p2x2) and p3x3 (resp. 1√

8
(p1x2 −

p2x1) and p3x3, resp. 1
2
√

2
(p1x1 − p2x2), 1√

2
(p1x2 + p2x1) and p3x3), resp.

1√
8
(p1x1 − p2x2) and p3x3, resp. 1√

8
(p1x2 + p2x1) and p3x3, resp. 1

2
√

2
(p1x2 −

p2x1), 1√
2
(p1x1 + p2x2) and p3x3)), and Z0n(p) = (Z0n

1 (p), . . . , Z0n
6 (p))�,

1 ≤ n ≤ 16 (resp. Z0n(p) = (Z0n
1 (p), . . . , Z0n

6 (p))�, 17 ≤ n ≤ 32, resp.
Z1n(p) = (Z1n

1 (p), . . . , Z1n
6 (p))�) are centred uncorrelated random measures on

(R̂3/D8 × Zc2)3,4,6,7 (resp. on (R̂3/D8 × Zc2)3,4,6,7, resp. on (R̂3/D8 × Zc2)0−2,5)
with control measure f+

0 (p) dΦ(p) (resp. f−0 (p) dΦ(p), resp. f1(p) dΦ(p)).

Proofs of the remaining cases, except of the case of G = O(3), may be left to
the reader.

When G = O(3), we have S2(ρ1) = ρ0 ⊕ ρ2. The representation ρ is

ρ = S2(S2(ρ1)) = S2(ρ1 ⊕ ρ2) = 2ρ0 ⊕ 2ρ2 ⊕ ρ4.

The basis in the space V of the representation ρ is given by Equations (3.65–
3.69). We calculate the basis in the space of the representation S2(ρ). The result
is given in Table 3.11.

The function f(λ) takes the form

fi···�′(λ) =
4∑
t=0

m2t∑
v=1

f2t,v(λ)T 2t,v,0
i···�′ (3.97)

with f2t,v(0) = 0 for t ≥ 1, where m0 = 7, m2 = 10, m4 = 8, m6 = 3 and
m8 = 1. When λ = 0, we obtain

fi···l′(0) =
7∑
v=1

f0,v(λ)T0,v,0
i···l′ .

Equation (3.28), which determines the M-functions, takes the form

Mm,n(p) =
m∑

q=−m
Tm,n,qρmgq0 (p).

We express the M-functions in terms of the L-functions. The result is given in
Table 3.12.
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Table 3.11 The tensors of the uncoupled basis of the space S2(V).

Tensor Value

T
0,1,0
i···l′ T

0,1
ijklT

0,1
i′j′k′l′

T
0,2
i···l′

1√
2
(T 0,1

ijklT
0,2
i′j′k′l′ + T 0,1

i′j′k′l′T
0,2
ijkl)

T
0,3,0
i···l′

2∑
q,q′=−2

g
0[q,q′]
0[2,2]

T
2,1,q
ijkl T

2,1,q′
i′j′k′l′

T
0,4,0
i···l′ T

0,2
ijklT

0,2
i′j′k′l′

T
0,5,0
i···l′

1√
2
(

2∑
q,q′=−2

g
0[q,q′]
0[2,2]

T
2,1,q
ijkl T

2,2,q′
i′j′k′l′ +

2∑
q,q′=−2

g
0[q′,q]
0[2,2]

T
2,1,q′
i′j′k′l′T

2,2,q
ijkl )

T
0,6,0
i···l′

2∑
q,q′=−2

g
0[q,q′]
0[2,2]

T
2,2,q
ijkl T

2,2,q′
i′j′k′l′

T
0,7,0
i···l′

4∑
q,q′=−4

g
0[q,q′]
0[4,4]

T
4,1,q
ijkl T

4,1,q′
i′j′k′l′

T
2,1,u
i···l′

1√
2
(T 0,1

ijklT
2,1,u
i′j′k′l′ + T 0,1

i′j′k′l′T
2,1,u
ijkl )

T
2,2,u
i···l′

1√
2
(T 0,2

ijklT
2,1,u
i′j′k′l′ + T 0,2

i′j′k′l′T
2,1,u
ijkl )

T
2,3,u
i···l′

1√
2
(T 0,1

ijklT
2,2,u
i′j′k′l′ + T 0,1

i′j′k′l′T
2,2,u
ijkl )

T
2,4,u
i···l′

2∑
q,q′=−2

g
u[q,q′]
2[2,2]

T
2,1,q
ijkl T

2,1,q′
i′j′k′l′

T
2,5,u
i···l′

1√
2
(T 0,2

ijklT
2,2,u
i′j′k′l′ + T 0,2

i′j′k′l′T
2,2,u
ijkl )

T
2,6,u
i···l′

1√
2
(

2∑
q=−2

4∑
q′=−4

g
u[q,q′]
2[2,4]

T
2,1,q
ijkl T

4,1,q′
i′j′k′l′ +

2∑
q′=−2

4∑
q=−4

g
u[q′,q]
2[2,4]

T
2,1,q′
i′j′k′l′T

4,1,q
ijkl )

T
2,7,u
i···l′

1√
2
(

2∑
q,q′=−2

g
u[q,q′]
2[2,2]

T
2,2,q
ijkl T

2,1,q′
i′j′k′l′ +

2∑
q′,q=−2

g
u[q′,q]
2[2,2]

T
2,2,q′
i′j′k′l′T

2,1,q
ijkl )

T
2,8,u
i···l′

2∑
q,q′=−2

g
u[q,q′]
2[2,2]

T
2,2,q
ijkl T

2,2,q′
i′j′k′l′

T
2,9,u
i···l′

1√
2
(

2∑
q=−2

4∑
q′=−4

g
u[q,q′]
2[2,4]

T
2,2,q
ijkl T

4,1,q′
i′j′k′l′ +

2∑
q′=−2

4∑
q=−4

g
u[q′,q]
2[2,4]

T
2,2,q′
i′j′k′l′T

4,1,q
ijkl )

T
2,10,u
i···l′

4∑
q,q′=−4

g
u[q,q′]
2[4,4]

T
4,1,q
ijkl T

4,1,q′
i′j′k′l′

T
4,1,u
i···l′

1√
2
(T 0,1

ijklT
4,1,u
i′j′k′l′ + T 0,1

i′j′k′l′T
4,1,u
ijkl )

T
4,2,u
i···l′

4∑
q,q′=−4

g
u[q,q′]
4[2,2]

T
2,1,q
ijkl T

2,1,q′
i′j′k′l′
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Table 3.11 (Cont.)

Tensor Value

T
4,3,u
i···l′

1√
2
(T 0,2

ijklT
4,1,u
i′j′k′l′ + T 0,2

i′j′k′l′T
4,1,u
ijkl )

T
4,4,u
i···l′

1√
2
(

4∑
q,q′=−4

g
u[q,q′]
4[2,2]

T
2,2,q
ijkl T

2,1,q′
i′j′k′l′ +

4∑
q′,q=−4

g
u[q′,q]
4[2,2]

T
2,2,q′
i′j′k′l′T

2,1,q
ijkl )

T
4,5,u
i···l′

1√
2
(

2∑
q=−2

4∑
q′=−4

g
u[q,q′]
4[2,4]

T
2,1,q
ijkl T

4,1,q′
i′j′k′l′ +

2∑
q′=−2

4∑
q=−4

g
u[q′,q]
4[2,4]

T
2,1,q′
i′j′k′l′T

4,1,q
ijkl )

T
4,6,u
i···l′

4∑
q,q′=−4

g
u[q,q′]
4[2,2]

T
2,2,q
ijkl T

2,2,q′
i′j′k′l′

T
4,7,u
i···l′

1√
2
(

2∑
q=−2

4∑
q′=−4

g
u[q,q′]
4[2,4]

T
2,2,q
ijkl T

4,1,q′
i′j′k′l′ +

2∑
q′=−2

4∑
q=−4

g
u[q′,q]
4[2,4]

T
2,2,q′
i′j′k′l′T

4,1,q
ijkl )

T
4,8,u
i···l′

4∑
q,q′=−4

g
u[q,q′]
4[4,4]

T
4,1,q
ijkl T

4,1,q′
i′j′k′l′

T
6,1,u
i···l′

1√
2
(

2∑
q=−2

4∑
q′=−4

g
u[q,q′]
6[2,4]

T
2,1,q
ijkl T

4,1,q′
i′j′k′l′ +

2∑
q′=−2

4∑
q=−4

g
u[q′,q]
6[2,4]

T
2,1,q′
i′j′k′l′T

4,1,q
ijkl )

T
6,2,u
i···l′

1√
2
(

2∑
q=−2

4∑
q′=−4

g
u[q,q′]
6[2,4]

T
2,2,q
ijkl T

4,1,q′
i′j′k′l′ +

2∑
q′=−2

4∑
q=−4

g
u[q′,q]
6[2,4]

T
2,2,q′
i′j′k′l′T

4,1,q
ijkl )

T
6,3,u
i···l′

4∑
q,q′=−4

g
u[q,q′]
6[4,4]

T
4,1,q
ijkl T

4,1,q′
i′j′k′l′

T
8,1,u
i···l′

4∑
q,q′=−4

g
u[q,q′]
8[4,4]

T
4,1,q
ijkl T

4,1,q′
i′j′k′l′

We enumerate the 21 indexes ijk� in the following order: −1−1−1−1, 0000,
1111, 0101, −11− 11, −10− 10, −1− 100, −1− 111, 0011, −11− 10, −1− 101,
1101, 0001, 01− 11, 11− 10, −1− 1− 10, 00− 10, 01− 10, −1− 1− 11, 11− 11,
00 − 11. With this order, the matrix fII′(λ) becomes block-diagonal. We chose
29 linearly independent elements of the above matrix according to Table 3.13.

The remaining non-zero entries of the matrix f(λ) are defined by

f1,1(λ) = f1,3(λ), f1,2(λ) = f2,3(λ),

f1,6(λ) = f3,4(λ), f1,7(λ) = f3,9(λ),

f1,8(λ) = f3,8(λ), f2,4(λ) = f2,6(λ),

f2,7(λ) = f2,9(λ), f4,4(λ) = f6,6(λ),

f4,5(λ) = f5,6(λ), f4,9(λ) = f6,7(λ),

f5,7(λ) = f5,9(λ), f7,7(λ) = f9,9(λ),

f10,10(λ) = f14,14(λ), f10,11(λ) = f14,15(λ),
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Table 3.12 The functions Mn,m(p) expressed as linear combinations of the
functions Lmi···l′(p)

M
n,m
i···l′ (p) Linear combination

M
0,1
i···l′

1
9
L

0,1
i···l′

M
0,2
i···l′ −

√
2

9
√

5
L1

i···l′ + 1
6
√

10
L2

i···l′

M
0,3
i···l′ − 2

9
√

5
L1

i···l′ + 1
12

√
5
L3

i···l′

M
0,4
i···l′

1
45
L1

i···l′ −
1
30
L2

i···l′ + 1
20
L4

i···l′

M
0,5
i···l′

8
9
√

35
L1

i···l′ −
1

3
√

35
L2

i···l′ −
1

3
√

35
L3

i···l′ + 1
8
√

35
L5

i···l′

M
0,6
i···l′

11
63

√
5
L1

i···l′ −
1

42
√

5
L2

i···l′ −
√

5
42
L3

i···l′ −
1

28
√

5
L4

i···l′ + 1
28

√
5
L5

i···l′

+ 3
28

√
5
L6

i···l′ −
3

56
√

5
L7

i···l′

M
0,7
i···l′ − 1

35
L1

i···l′ + 2
105
L2

i···l′ + 1
84
L3

i···l′ −
1

210
L4

i···l′ −
1
84
L5

i···l′

+ 1
168
L6

i···l′ + 1
56
L7

i···l′

M
2,1
i···l′ (p) −

√
2

9
L1

i···l′ + 1
6
√

2
L8

i···l′ (p)

M
2,2
i···l′ (p)

√
2

9
√

5
L1

i···l′ −
1

6
√

10
L2

i···l′ −
1

6
√

10
L8

i···l′ (p) + 1
4
√

10
L9

i···l′ (p)

M
2,3
i···l′ (p) 4

9
√

7
L1

i···l′ −
1

6
√

7
L2

i···l′ −
1

3
√

7
L8

i···l′ (p) + 1
4
√

7
L10

i···l′ (p)

M
2,4
i···l′ (p) 4

√
2

9
√

7
L1

i···l′ −
1

6
√

14
L3

i···l′ −
√

2
3
√

7
L8

i···l′ (p) + 1
4
√

14
L11

i···l′ (p)

M
2,5
i···l′ (p) − 4

9
√

35
L1

i···l′ + 1
2
√

35
L2

i···l′ −
1

2
√

35
L4

i···l′ + 1
3
√

35
L8

i···l′ (p)

− 1
2
√

35
L9

i···l′ (p) − 1
4
√

35
L10

i···l′ (p) + 3
8
√

35
L12

i···l′ (p)

M
2,6
i···l′ (p) −

√
2

7
√

5
L1

i···l′ +
√

2
21

√
5
L2

i···l′ +
√

5
84

√
2
L3

i···l′ −
√

5
168

√
2
L5

i···l′

+ 3
14

√
10
L8

i···l′ (p) − 1
42

√
10
L9

i···l′ (p) −
√

5
42

√
2
L10

i···l′ (p) −
√

5
42

√
2
L11

i···l′ (p)

+
√

5
168

√
2
L13

i···l′ (p) +
√

5
56

√
2
L14

i···l′ (p)

M
2,7
i···l′ (p) − 11

√
2

63
L1

i···l′ −
1

42
√

2
L2

i···l′ −
5

42
√

2
L3

i···l′ + 1
56

√
2
L5

i···l′

− 11
42

√
2
L8

i···l′ (p) − 1
28

√
2
L9

i···l′ (p) + 1
14

√
2
L10

i···l′ (p) + 1
14

√
2
L11

i···l′ (p)

+ 3
28

√
2
L13

i···l′ (p) − 3
56

√
2
L14

i···l′ (p)

M
2,8
i···l′ (p) 37

63
√

14
L1

i···l′ −
5

42
√

14
L2

i···l′ −
2
√

2
21

√
7
L3

i···l′ + 1
28

√
14
L4

i···l′

+ 1
28

√
14
L5

i···l′ + 3
28

√
14
L6

i···l′ −
3

56
√

14
L7

i···l′ −
5

42
√

14
L8

i···l′ (p)

− 5
28

√
14
L9

i···l′ (p) + 1
28

√
14
L10

i···l′ (p) + 1
14

√
14
L11

i···l′ (p) + 3
56

√
14
L12

i···l′ (p)

− 3
28

√
14
L13

i···l′ (p) + 3
56

√
14
L14

i···l′ (p) + 9
56

√
14
L15

i···l′ (p) − 9
112

√
14
L16

i···l′ (p)

M
2,9
i···l′ (p) − 11

7
√

35
L1

i···l′ + 13
2
√

35
L2

i···l′ + 5
√

5
42

√
7
L3

i···l′ + 3
28

√
35
L4

i···l′

− 11
√

5
336

√
7
L5

i···l′ −
√

5
28

√
7
L6

i···l′ −
√

5
56

√
7
L7

i···l′ + 9
14

√
35
L8

i···l′ (p)
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Table 3.12 (Cont.)

M
n,m
i···l′ (p) Linear combination

+ 1
21

√
35
L9

i···l′ (p) + 1
42

√
35
L10

i···l′ (p) −
√

5
42

√
7
L11

i···l′ (p) − 3
14

√
35
L12

i···l′ (p)

−
√

5
21

√
7
L13

i···l′ (p) −
√

5
56

√
7
L14

i···l′ (p) +
√

5
112

√
7
L15

i···l′ (p) + 3
√

5
112

√
7
L16

i···l′ (p)

M
2,10
i···l′ (p) 13

14
√

77
L1

i···l′ −
65

84
√

77
L2

i···l′ + 1
84

√
77
L3

i···l′ + 67
168

√
77
L4

i···l′

+ 25
168

√
77
L5

i···l′ −
65

168
√

77
L6

i···l′ −
√

11
112

√
7
L7

i···l′ −
3

28
√

77
L8

i···l′ (p)

+ 19
56

√
77
L9

i···l′ (p) + 13
56

√
77
L10

i···l′ (p) − 9
56

√
77
L11

i···l′ (p) − 17
112

√
77
L12

i···l′ (p)

− 25
56

√
77
L13

i···l′ (p) +
√

11
112

√
7
L14

i···l′ (p) + 5
112

√
77
L15

i···l′ (p) − 3
√

11
224

√
7
L16

i···l′ (p)

+
√

7
16

√
11
L17

i···l′ (p)

M
4,1
i···l′ (p) 1

6
√

35
L1

i···l′ + 1
12

√
35
L2

i···l′ −
√

5
12

√
7
L8

i···l′ (p) −
√

5
12

√
7
L10

i···l′ (p)

+
√

35
12
L18

i···l′ (p)

M
4,2
i···l′ (p) 1

3
√

70
L1

i···l′ + 1
12

√
70
L3

i···l′ −
√

5
6
√

14
L8

i···l′ (p) −
√

5
12

√
14
L11

i···l′ (p)

+
√

35
12

√
2
L19

i···l′ (p)

M
4,3
i···l′ (p) − 1

30
√

7
L1

i···l′ + 1
120

√
7
L2

i···l′ + 1
20

√
7
L4

i···l′ + 1
12

√
7
L8

i···l′ (p)

− 1
8
√

7
L9

i···l′ (p) + 1
12

√
7
L10

i···l′ (p) − 1
8
√

7
L12

i···l′ (p) −
√

7
12
L18

i···l′ (p)

+
√

7
8
L20

i···l′ (p)

M
4,4
i···l′ (p) − 17

√
2

21
√

5
L1

i···l′ + 3
7
√

10
L2

i···l′ + 13
42

√
10
L3

i···l′ −
1

14
√

10
L5

i···l′

+ 13
√

5
42

√
2
L8

i···l′ (p) −
√

5
14

√
2
L9

i···l′ (p) − 3
√

5
28

√
2
L10

i···l′ (p) −
√

5
42

√
2
L11

i···l′ (p)

−
√

5
28

√
2
L13

i···l′ (p) +
√

5
56

√
2
L14

i···l′ (p) −
√

5
3
√

2
L19

i···l′ (p) +
√

5
8
√

2
L21

i···l′ (p)

M
4,5
i···l′ (p) − 13

21
√

11
L1

i···l′ + 1
84

√
11
L2

i···l′ + 1
7
√

11
L3

i···l′ −
1

112
√

11
L5

i···l′

+ 67
84

√
11
L8

i···l′ (p) + 1
56

√
11
L9

i···l′ (p) + 25
84

√
11
L10

i···l′ (p) − 9
56

√
11
L11

i···l′ (p)

− 5
28

√
11
L13

i···l′ (p) −
√

11
112
L14

i···l′ (p) − 7
3
√

11
L18

i···l′ (p) − 1
2
√

11
L19

i···l′ (p)

− 1
4
√

11
L21

i···l′ (p) + 7
16

√
11
L22

i···l′ (p)

M
4,6
i···l′ (p)

√
2

21
√

35
L1

i···l′ −
3
√

2
7
√

35
L2

i···l′ + 5
√

5
42

√
14
L3

i···l′ + 3
√

2
7
√

35
L4

i···l′

− 1
7
√

70
L5

i···l′ −
3

7
√

70
L6

i···l′ + 3
14

√
70
L7

i···l′ −
17

√
5

42
√

14
L8

i···l′ (p)

+ 11
√

10
56

√
7
L9

i···l′ (p) + 9
√

10
56

√
7
L10

i···l′ (p) −
√

5
42

√
14
L11

i···l′ (p) − 15
√

5
56

√
14
L12

i···l′ (p)

+
√

10
56

√
7
L13

i···l′ (p) −
√

10
112

√
7
L14

i···l′ (p) − 3
√

10
112

√
7
L15

i···l′ (p) + 3
√

10
224

√
7
L16

i···l′ (p)

+
√

10
3
√

7
L19

i···l′ (p) −
√

10
4
√

7
L21

i···l′ (p) + 3
√

10
16

√
7
L23

i···l′ (p)

M
4,7
i···l′ (p) − 19

√
2

21
√

77
L1

i···l′ + 17
84

√
154
L2

i···l′ + 17
28

√
154
L3

i···l′ −
1

28
√

154
L4

i···l′

−
√

11
84

√
14
L5

i···l′ −
3

28
√

154
L6

i···l′ + 3
56

√
154
L7

i···l′ −
52

√
2

21
√

77
L8

i···l′ (p)

− 37
28

√
154
L9

i···l′ (p) − 17
√

2
21

√
77
L10

i···l′ (p) − 9
28

√
154
L11

i···l′ (p) + 53
56

√
154
L12

i···l′ (p)
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Table 3.12 (Cont.)

M
n,m
i···l′ (p) Linear combination

− 67
28

√
154
L13

i···l′ (p) + 71
112

√
154
L14

i···l′ (p) − 3
112

√
154
L15

i···l′ (p) − 3
√

11
84

√
14
L16

i···l′ (p)

−
√

7
6
√

22
L18

i···l′ (p) − 17
2
√

154
L19

i···l′ (p) −
√

7
4
√

22
L20

i···l′ (p) + 23
√

7
56

√
22
L21

i···l′ (p)

+
√

7
8
√

22
L22

i···l′ (p) − 3
2
√

154
L23

i···l′ (p) + 3
√

7
4
√

22
L24

i···l′ (p) − 3
√

7
16

√
22
L25

i···l′ (p)

M
4,8
i···l′ (p) 571

35
√

2002
L1

i···l′ + 41
35

√
2002
L2

i···l′ −
457

56
√

2002
L3

i···l′ −
313

70
√

2002
L4

i···l′

+ 87
56

√
2002
L5

i···l′ + 127
28

√
2002
L6

i···l′ −
3
√

13
28

√
154
L7

i···l′ −
531

14
√

2002
L8

i···l′ (p)

+ 31
√

2
7
√

1001
L9

i···l′ (p) + 2
√

26
7
√

77
L10

i···l′ (p) + 185
28

√
2002
L11

i···l′ (p) − 17
28

√
2002
L12

i···l′ (p)

+ 1055
56

√
2002
L13

i···l′ (p) − 335
56

√
2002
L14

i···l′ (p) − 375
56

√
2002
L15

i···l′ (p)

+ 135
56

√
2002
L16

i···l′ (p) − 5
√

7
8
√

286
L17

i···l′ (p) + 2
√

14√
143
L18

i···l′ (p) + 205
4
√

2002
L19

i···l′ (p)

−
√

7√
286
L20

i···l′ (p) − 75
4
√

2002
L21

i···l′ (p) − 5
√

7
4
√

286
L22

i···l′ (p) + 15
2
√

2002
L23

i···l′ (p)

− 25
√

7
8
√

286
L24

i···l′ (p) + 15
√

7
8
√

286
L25

i···l′ (p)

M
6,1
i···l′ (p) 3

2
√

77
L1

i···l′ −
5

12
√

77
L2

i···l′ −
5

12
√

77
L3

i···l′ + 1
12

√
77
L5

i···l′

− 8963
√

11
9240

√
7
L8

i···l′ (p) +
√

7
24

√
11
L9

i···l′ (p) +
√

7
12

√
11
L10

i···l′ (p) +
√

7
12

√
11
L11

i···l′ (p)

+
√

7
24

√
11
L13

i···l′ (p) + 35
4
√

77
L18

i···l′ (p) −
√

7
4
√

11
L19

i···l′ (p) −
√

11
8
√

7
L21

i···l′ (p)

−
√

77
8
L26

i···l′ (p)

M
6,2
i···l′ (p) 6

√
2

7
√

11
L1

i···l′ −
4343

980
√

22
L2

i···l′ −
23

42
√

22
L3

i···l′ + 1
10

√
22
L4

i···l′

+ 5
√

11
392

√
2
L5

i···l′ + 1
7
√

22
L6

i···l′ + 2
49

√
22
L7

i···l′ + 97
294

√
22
L8

i···l′ (p)

+ 377
420

√
22
L9

i···l′ (p) + 1
24

√
22
L10

i···l′ (p) + 1
6
√

22
L11

i···l′ (p) + 39
280

√
22
L12

i···l′ (p)

+ 5
6
√

22
L13

i···l′ (p) − 1
8
√

22
L14

i···l′ (p) − 1
49

√
22
L15

i···l′ (p) − 195
√

11
392

√
2
L16

i···l′ (p)

+ 2
√

2
11

√
11
L18

i···l′ (p) + 2
√

2√
11
L19

i···l′ (p) − 9
4
√

22
L20

i···l′ (p) − 5
8
√

22
L21

i···l′ (p)

− 1
4
√

22
L22

i···l′ (p) − 3
4
√

22
L23

i···l′ (p) − 3
2
√

22
L24

i···l′ (p) + 3
8
√

22
L25

i···l′ (p)

+ 3
√

11
8
√

2
L27

i···l′ (p)

M
6,3
i···l′ (p) − 9

7
√

55
L1

i···l′ −
√

5
84

√
11
L2

i···l′ + 25
√

5
168

√
11
L3

i···l′ + 19
41

√
55
L4

i···l′

− 61
336

√
55
L5

i···l′ −
37

84
√

55
L6

i···l′ +
√

5
28

√
11
L7

i···l′ + 9
2
√

55
L8

i···l′ (p)

− 7
4
√

55
L9

i···l′ (p) − 2√
55
L10

i···l′ (p) − 9
16

√
55
L11

i···l′ (p) + 3
8
√

55
L12

i···l′ (p)

− 19
8
√

55
L13

i···l′ (p) + 19
16

√
55
L14

i···l′ (p) + 17
16

√
55
L15

i···l′ (p) − 7
16

√
55
L16

i···l′ (p)

+ 7
16

√
55
L17

i···l′ (p) + 1
2
√

55
L18

i···l′ (p) + 3
16

√
55
L19

i···l′ (p) +
√

5
4
√

11
L20

i···l′ (p)

+ 23
8
√

55
L21

i···l′ (p) − 43
16

√
55
L22

i···l′ (p) + 37
8
√

55
L23

i···l′ (p) − 13
2
√

55
L24

i···l′ (p)

− 3
4
√

55
L25

i···l′ (p) −
√

11
2
√

5
L26

i···l′ (p) −
√

11
2
√

5
L27

i···l′ (p) + 7
√

11
16

√
5
L28

i···l′ (p)
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Table 3.12 (Cont.)

M
n,m
i···l′ (p) Linear combination

M
8,1
i···l′ (p) − 36833

5880
√

1430
L1

i···l′ + 5199
√

11
33320

√
130
L2

i···l′ + 5717
3528

√
1430
L3

i···l′ −
4219

√
11

723240
√

130
L4

i···l′

− 437
882

√
1430
L5

i···l′ + 433
3528

√
1430
L6

i···l′ +
√

143
1764

√
10
L7

i···l′ + 27
8
√

1430
L8

i···l′ (p)

− 3
8
√

1430
L9

i···l′ (p) +
√

13
8
√

110
L10

i···l′ (p) − 9
8
√

1430
L11

i···l′ (p) − 7
8
√

1430
L12

i···l′ (p)

− 3
8
√

1430
L13

i···l′ (p) − 213
√

11
2744

√
130
L14

i···l′ (p) − 3
8
√

1430
L15

i···l′ (p)

+
√

11
16

√
130
L16

i···l′ (p) − 41
56

√
1430
L17

i···l′ (p) − 7
√

11
8
√

130
L18

i···l′ (p) − 657
28

√
1430
L19

i···l′ (p)

+
√

55
8
√

26
L20

i···l′ (p) + 41
8
√

1430
L21

i···l′ (p) + 829
56

√
1430
L22

i···l′ (p)

− 5129
392

√
1430
L23

i···l′ (p) + 2027
56

√
1430
L24

i···l′ (p) − 83
8
√

1430
L25

i···l′ (p) −
√

143
8
√

10
L26

i···l′ (p)

−
√

143
8
√

10
L27

i···l′ (p) −
√

143
8
√

10
L28

i···l′ (p) + 3
√

715
8
√

2
L29

i···l′ (p)

Table 3.13 The elements of the matrix fII′(λ).

I I′ fII′ (λ)

1 2 3

1 1 1
9
f0,1(λ) + 4

45
f0,4(λ) + 8

√
5

315
f0,6(λ) + 4

√
5

45
f0,3(λ) + 8

105
f0,7(λ)

+ 2
√

10
45

f0,2(λ) + 8
√

35
315

f0,5(λ) − 4
√

14
441

f2,8(λ) − 2
√

14
63

f2,4(λ)

− 8
√

77
1617

f2,10(λ) − 4
√

10
105

f2,6(λ) − 8
√

35
735

f2,9(λ) −
√

2
9

f2,1(λ)

− 2
√

7
63

f2,3(λ) − 4
√

35
315

f2,5(λ) − 4
√

2
63

f2,7(λ) − 2
√

10
45

f2,2(λ)

+
√

70
245

f4,6(λ) +
√

70
70

f4,2(λ) + 27
√

2002
35035

f4,8(λ) + 2
√

11
77

f4,5(λ)

+ 2
√

154
539

f4,7(λ) +
√

7
35

f4,3(λ) +
√

35
70

f4,1(λ) +
√

10
35

f4,4(λ)

−
√

55
231

f6,3(λ) − 5
√

77
462

f6,1(λ) − 5
√

22
462

f6,2(λ) + 7
√

1430
6864

f8,1(λ)

1 2 1
9
f0,1(λ) + 4

45
f0,4(λ) − 4

√
5

315
f0,6(λ) − 2

√
5

45
f0,3(λ) + 1

35
f0,7(λ)

+ 2
√

10
45

f0,2(λ) − 4
√

35
315

f0,5(λ) − 4
√

14
441

f2,8(λ) − 2
√

14
63

f2,4(λ)

+ 2
√

77
539

f2,10(λ) −
√

10
210

f2,6(λ) −
√

35
735

f2,9(λ) +
√

2
18

f2,1(λ) +
√

7
63

f2,3(λ)

+ 2
√

35
315

f2,5(λ) − 4
√

2
63

f2,7(λ) +
√

10
45

f2,2(λ) − 4
√

70
735

f4,6(λ)

− 2
√

70
105

f4,2(λ) + 27
√

2002
35035

f4,8(λ) −
√

11
231

f4,5(λ) −
√

154
1617

f4,7(λ)

+ 11
√

7
210

f4,3(λ) + 11
√

35
420

f4,1(λ) − 4
√

10
105

f4,4(λ) + 2
√

55
385

f6,3(λ)

−
√

77
462

f6,1(λ) −
√

22
462

f6,2(λ) +
√

1430
715

f8,1(λ)

1 6 1
15

f0,4(λ) +
√

5
105

f0,6(λ) − 4
105

f0,7(λ) +
√

10
60

f0,2(λ) +
√

35
210

f0,5(λ)

− 2
√

14
147

f2,8(λ) − 5
√

77
1617

f2,10(λ) + 3
√

10
140

f2,6(λ) +
√

35
196

f2,9(λ) +
√

7
84

f2,3(λ)

−
√

2
21

f2,7(λ) −
√

10
60

f2,2(λ) −
√

70
980

f4,6(λ) +
√

2002
140140

f4,8(λ) − 5
√

11
462

f4,5(λ)
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Table 3.13 (Cont.)

I I′ fII′ (λ)

+ 2
√

154
1617

f4,7(λ) −
√

7
120

f4,3(λ) −
√

35
105

f4,1(λ) −
√

10
280

f4,4(λ) +
√

55
462

f6,3(λ)

+
√

77
154

f6,1(λ) + 9
√

22
1232

f6,2(λ) −
√

1430
858

f8,1(λ)

1 7 1
9
f0,1(λ) − 2

45
f0,4(λ) − 4

√
5

315
f0,6(λ) +

√
5

45
f0,3(λ) − 4

105
f0,7(λ)

+
√

10
90

f0,2(λ) −
√

35
315

f0,5(λ) + 8
√

14
441

f2,8(λ) − 2
√

14
63

f2,4(λ) − 5
√

77
1617

f2,10(λ)

+ 2
√

10
105

f2,6(λ) + 11
√

35
1470

f2,9(λ) −
√

2
36

f2,1(λ) − 2
√

7
63

f2,3(λ) −
√

35
315

f2,5(λ)

+ 2
√

2
63

f2,7(λ) +
√

10
45

f2,2(λ) +
√

70
735

f4,6(λ) −
√

70
420

f4,2(λ) +
√

2002
140140

f4,8(λ)

+
√

11
462

f4,5(λ) − 17
√

154
3234

f4,7(λ) − 11
√

7
420

f4,3(λ) −
√

35
420

f4,1(λ) +
√

10
420

f4,4(λ)

+
√

55
462

f6,3(λ) + 13
√

77
1848

f6,1(λ) + 5
√

22
924

f6,2(λ) −
√

1430
858

f8,1(λ)

1 8 1
9
f0,1(λ) − 2

45
f0,4(λ) − 4

√
5

315
f0,6(λ) +

√
5

45
f0,3(λ) − 4

105
f0,7(λ)

+
√

10
90

f0,2(λ) −
√

35
315

f0,5(λ) − 4
√

14
441

f2,8(λ) +
√

14
63

f2,4(λ) + 13
√

77
1617

f2,10(λ)

−
√

10
105

f2,6(λ) +
√

35
294

f2,9(λ) −
√

2
9

f2,1(λ) +
√

7
63

f2,3(λ) +
√

35
63

f2,5(λ)

−
√

2
63

f2,7(λ) −
√

10
90

f2,2(λ) − 4
√

70
735

f4,6(λ) +
√

70
105

f4,2(λ) − 109
√

2002
140140

f4,8(λ)

− 2
√

11
231

f4,5(λ) + 5
√

154
3234

f4,7(λ) −
√

7
420

f4,3(λ) +
√

35
105

f4,1(λ) −
√

10
105

f4,4(λ)

+
√

55
462

f6,3(λ) −
√

77
231

f6,1(λ) + 5
√

22
924

f6,2(λ) +
√

1430
6864

f8,1(λ)

2 2 1
9
f0,1(λ) + 4

45
f0,4(λ) + 8

√
5

315
f0,6(λ) + 4

√
5

45
f0,3(λ) + 8

105
f0,7(λ)

+ 2
√

10
45

f0,2(λ) + 8
√

35
315

f0,5(λ) + 8
√

14
441

f2,8(λ) + 4
√

14
63

f2,4(λ)

+ 16
√

77
1617

f2,10(λ) + 8
√

10
105

f2,6(λ) + 16
√

35
735

f2,9(λ) + 2
√

2
9

f2,1(λ) + 4
√

7
63

f2,3(λ)

+ 8
√

35
315

f2,5(λ) + 8
√

2
63

f2,7(λ) + 4
√

10
45

f2,2(λ) + 8
√

70
735

f4,6(λ)

+ 4
√

70
105

f4,2(λ) + 72
√

2002
35035

f4,8(λ) + 16
√

11
231

f4,5(λ) + 16
√

154
1617

f4,7(λ)

+ 8
√

7
105

f4,3(λ) + 4
√

35
105

f4,1(λ) + 8
√

10
105

f4,4(λ) + 16
√

55
1155

f6,3(λ)

+ 8
√

77
231

f6,1(λ) + 8
√

22
231

f6,2(λ) + 8
√

1430
2145

f8,1(λ)

2 4 1
15

f0,4(λ) +
√

5
105

f0,6(λ) − 4
105

f0,7(λ) +
√

10
60

f0,2(λ) +
√

35
210

f0,5(λ) +
√

14
147

f2,8(λ)

− 8
√

77
1617

f2,10(λ)− 2
√

10
105

f2,6(λ)−
√

35
735

f2,9(λ)+
√

7
84

f2,3(λ)+
√

35
70

f2,5(λ)+
√

2
42

f2,7(λ)

+
√

10
30

f2,2(λ) +
√

70
245

f4,6(λ) − 36
√

2002
35035

f4,8(λ) − 4
√

11
231

f4,5(λ) −
√

154
1617

f4,7(λ)

+
√

7
105

f4,3(λ)−
√

35
105

f4,1(λ)+
√

10
70

f4,4(λ)− 8
√

55
1155

f6,3(λ)− 2
√

77
231

f6,1(λ)−
√

22
462

f6,2(λ)

− 4
√

1430
2145

f8,1(λ)

2 5 1
15

f0,4(λ) − 2
√

5
105

f0,6(λ) + 1
105

f0,7(λ) +
√

10
60

f0,2(λ) −
√

35
105

f0,5(λ) − 2
√

14
147

f2,8(λ)

+ 2
√

77
1617

f2,10(λ)+
√

10
210

f2,6(λ)−
√

35
147

f2,9(λ)−
√

7
42

f2,3(λ)−
√

2
21

f2,7(λ)+
√

10
30

f2,2(λ)
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Table 3.13 (Cont.)

I I′ fII′ (λ)

− 2
√

70
245

f4,6(λ) + 9
√

2002
35035

f4,8(λ) +
√

11
231

f4,5(λ) − 5
√

154
1617

f4,7(λ) +
√

7
30

f4,3(λ)

+
√

35
420

f4,1(λ) −
√

10
35

f4,4(λ) + 2
√

55
1155

f6,3(λ) +
√

77
462

f6,1(λ) − 5
√

22
462

f6,2(λ)

+
√

1430
2145

f8,1(λ)

2 7 1
9
f0,1(λ) − 2

45
f0,4(λ) − 4

√
5

315
f0,6(λ) +

√
5

45
f0,3(λ) − 4

105
f0,7(λ)

+
√

10
90

f0,2(λ) −
√

35
315

f0,5(λ) − 4
√

14
441

f2,8(λ) +
√

14
63

f2,4(λ) − 8
√

77
1617

f2,10(λ)

−
√

10
105

f2,6(λ) − 8
√

35
735

f2,9(λ) + 5
√

2
36

f2,1(λ) +
√

7
63

f2,3(λ) − 4
√

35
315

f2,5(λ)

* −
√

2
63

f2,7(λ) −
√

10
90

f2,2(λ) − 4
√

70
735

f4,6(λ) +
√

70
105

f4,2(λ) − 36
√

2002
35035

f4,8(λ)

− 2
√

11
231

f4,5(λ) − 8
√

154
1617

f4,7(λ) − 4
√

7
105

f4,3(λ) +
√

35
105

f4,1(λ) −
√

10
105

f4,4(λ)

− 8
√

55
1155

f6,3(λ) −
√

77
231

f6,1(λ) − 4
√

22
231

f6,2(λ) − 4
√

1430
2145

f8,1(λ)

4 4 1
20

f0,4(λ) +
√

5
70

f0,6(λ) + 3
70

f0,5(λ) −
√

14
196

f2,8(λ) + 2
√

77
539

f2,10(λ)

+
√

35
980

f2,9(λ) +
√

35
140

f2,5(λ) + 9
√

70
3920

f4,6(λ) + 17
√

2002
140140

f4,8(λ)

− 13
√

154
2156

f4,7(λ) −
√

7
35

f4,3(λ) −
√

55
770

f6,3(λ) −
√

22
308

f6,2(λ) +
√

1430
715

f8,1(λ)

4 5 1
20

f0,4(λ) −
√

5
140

f0,6(λ) − 1
210

f0,5(λ) −
√

14
196

f2,8(λ) −
√

77
1617

f2,10(λ)

+ 9
√

35
1960

f2,9(λ) −
√

35
280

f2,5(λ) − 3
√

70
980

f4,6(λ) − 9
√

2002
70070

f4,8(λ)

+ 9
√

154
4312

f4,7(λ) − 3
√

7
280

f4,3(λ) −
√

55
1155

f6,3(λ) + 9
√

22
1232

f6,2(λ) −
√

1430
4290

f8,1(λ)

4 9 − 1
30

f0,4(λ) − 2
√

5
105

f0,6(λ) + 3
70

f0,7(λ) +
√

10
60

f0,2(λ) +
√

35
210

f0,5(λ) +
√

14
147

f2,8(λ)

+ 2
√

77
539

f2,10(λ)+
√

10
840

f2,6(λ)−
√

35
5880

f2,9(λ)+
√

7
84

f2,3(λ)−
√

35
140

f2,5(λ)−
√

2
84

f2,7(λ)

+
√

10
120

f2,2(λ) − 3
√

70
980

f4,6(λ) + 17
√

2002
140140

f4,8(λ) − 13
√

11
924

f4,5(λ) + 13
√

154
12936

f4,7(λ)

−
√

7
210

f4,3(λ)−
√

35
105

f4,1(λ)+ 3
√

10
560

f4,4(λ)−
√

55
770

f6,3(λ)−
√

77
924

f6,1(λ)+
√

22
1848

f6,2(λ)

+
√

1430
715

f8,1(λ)

5 5 1
20

f0,4(λ) +
√

5
70

f0,6(λ) + 3
70

f0,5(λ) +
√

14
98

f2,8(λ) − 4
√

77
539

f2,10(λ)

−
√

35
490

f2,9(λ) −
√

35
70

f2,5(λ) + 3
√

70
490

f4,6(λ) + 127
√

2002
140140

f4,8(λ)

−
√

154
1078

f4,7(λ) +
√

7
140

f4,3(λ) −
√

55
770

f6,3(λ) −
√

22
308

f6,2(λ) +
√

1430
11440

f8,1(λ)

5 7 − 1
30

f0,4(λ) +
√

5
105

f0,6(λ)− 1
210

f0,7(λ) +
√

10
60

f0,2(λ)−
√

35
420

f0,5(λ) +
√

14
147

f2,8(λ)

−
√

77
1617

f2,10(λ)+
√

10
840

f2,6(λ)+
√

35
294

f2,9(λ)−
√

7
42

f2,3(λ)−
√

2
84

f2,7(λ)+
√

10
120

f2,2(λ)

+
√

70
245

f4,6(λ) − 9
√

2002
70070

f4,8(λ) +
√

11
924

f4,5(λ) + 5
√

154
3234

f4,7(λ) −
√

7
60

f4,3(λ)

+
√

35
420

f4,1(λ) −
√

10
140

f4,4(λ) −
√

55
1155

f6,3(λ) +
√

77
1848

f6,1(λ) + 5
√

22
924

f6,2(λ)

−
√

1430
4290

f8,1(λ)
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Table 3.13 (Cont.)

I I′ fII′ (λ)

7 7 1
9
f0,1(λ) + 1

45
f0,4(λ) + 8

√
5

315
f0,6(λ) +

√
5

45
f0,3(λ) + 3

70
f0,7(λ)

−
√

10
45

f0,2(λ) − 4
√

35
315

f0,5(λ) − 4
√

14
441

f2,8(λ) −
√

14
126

f2,4(λ) + 2
√

77
539

f2,10(λ)

+
√

10
420

f2,6(λ) −
√

35
735

f2,9(λ) +
√

2
18

f2,1(λ) − 2
√

7
63

f2,3(λ) + 2
√

35
315

f2,5(λ)

+ 2
√

2
63

f2,7(λ) −
√

10
90

f2,2(λ) +
√

70
245

f4,6(λ) +
√

70
280

f4,2(λ) + 17
√

2002
140140

f4,8(λ)

− 13
√

11
462

f4,5(λ) + 13
√

154
1617

f4,7(λ) + 2
√

7
105

f4,3(λ) − 2
√

35
105

f4,1(λ) −
√

10
70

f4,4(λ)

−
√

55
770

f6,3(λ) −
√

77
462

f6,1(λ) +
√

22
231

f6,2(λ) +
√

1430
715

f8,1(λ)

8 8 1
9
f0,1(λ) + 1

45
f0,4(λ) + 8

√
5

315
f0,6(λ) +

√
5

45
f0,3(λ) + 3

70
f0,7(λ)

−
√

10
45

f0,2(λ) − 4
√

35
315

f0,5(λ) + 8
√

14
441

f2,8(λ) +
√

14
63

f2,4(λ) − 4
√

77
539

f2,10(λ)

−
√

10
210

f2,6(λ) + 2
√

35
735

f2,9(λ) −
√

2
9

f2,1(λ) + 4
√

7
63

f2,3(λ) − 4
√

35
315

f2,5(λ)

− 4
√

2
63

f2,7(λ) +
√

10
45

f2,2(λ) + 8
√

70
735

f4,6(λ) +
√

70
105

f4,2(λ) + 127
√

2002
140140

f4,8(λ)

−
√

11
231

f4,5(λ) + 2
√

154
1617

f4,7(λ) −
√

7
210

f4,3(λ) +
√

35
210

f4,1(λ) − 4
√

10
105

f4,4(λ)

−
√

55
770

f6,3(λ) −
√

77
462

f6,1(λ) +
√

22
231

f6,2(λ) +
√

1430
11440

f8,1(λ)

10 10 3
√

5
280

f0,6(λ) + 1
42

f0,7(λ) + 3
√

14
784

f2,8(λ) −
√

77
1617

f2,10(λ) −
√

35
392

f2,9(λ)

− 3
√

70
980

f4,6(λ) − 69
√

2002
112112

f4,8(λ) − 3
√

154
8624

f4,7(λ) + 59
√

55
18480

f6,3(λ)

+
√

22
308

f6,2(λ) −
√

1430
4290

f8,1(λ)

10 11 −
√

5
70

f0,6(λ)+ 1
42

f0,7(λ)+
√

35
280

f0,5(λ)−
√

14
196

f2,8(λ)−
√

77
1617

f2,10(λ)−
√

10
336

f2,6(λ)

+
√

35
2352

f2,9(λ) +
√

2
112

f2,7(λ) +
√

70
245

f4,6(λ) − 69
√

2002
112112

f4,8(λ) −
√

11
1232

f4,5(λ)

+
√

154
17248

f4,7(λ) −
√

10
140

f4,4(λ) + 59
√

55
18480

f6,3(λ) +
√

77
924

f6,1(λ) −
√

22
1848

f6,2(λ)

−
√

1430
4290

f8,1(λ)

10 13
√

5
140

f0,6(λ) − 1
84

f0,7(λ) +
√

35
280

f0,5(λ) +
√

14
392

f2,8(λ) − 17
√

77
12936

f2,10(λ)

−
√

10
336

f2,6(λ) + 5
√

35
1176

f2,9(λ) +
√

2
112

f2,7(λ)

−
√

70
490

f4,6(λ) + 87
√

2002
112112

f4,8(λ) −
√

11
1232

f4,5(λ) −
√

154
1568

f4,7(λ)

−
√

10
140

f4,4(λ) − 61
√

55
18480

f6,3(λ) +
√

77
924

f6,1(λ) +
√

22
168

f6,2(λ)

−
√

1430
4290

f8,1(λ)

11 11 2
√

5
105

f0,6(λ) +
√

5
60

f0,3(λ) + 1
42

f0,7(λ) −
√

35
105

f0,5(λ) +
√

14
147

f2,8(λ) +
√

14
168

f2,4(λ)

−
√

77
1617

f2,10(λ)−
√

10
168

f2,6(λ)+
√

35
294

f2,9(λ)−
√

2
42

f2,7(λ)− 4
√

70
735

f4,6(λ)−
√

70
210

f4,2(λ)

− 69
√

2002
112112

f4,8(λ) −
√

11
616

f4,5(λ) +
√

154
2156

f4,7(λ) + 2
√

10
105

f4,4(λ) + 59
√

55
18480

f6,3(λ)

+
√

77
462

f6,1(λ) −
√

22
231

f6,2(λ) −
√

1430
4290

f8,1(λ)
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Table 3.13 (Cont.)

I I′ fII′ (λ)

16 16
√

5
210

f0,6(λ) +
√

5
60

f0,3(λ) + 1
21

f0,7(λ) +
√

35
210

f0,5(λ) +
√

14
588

f2,8(λ) +
√

14
168

f2,4(λ)

+ 13
√

77
6468

f2,10(λ) −
√

10
56

f2,6(λ) −
√

35
196

f2,9(λ) +
√

2
84

f2,7(λ)

−
√

70
735

f4,6(λ) −
√

70
210

f4,2(λ) − 3
√

2002
10192

f4,8(λ) − 3
√

11
616

f4,5(λ) − 3
√

154
4312

f4,7(λ)

−
√

10
105

f4,4(λ) +
√

55
336

f6,3(λ) +
√

77
154

f6,1(λ) +
√

22
154

f6,2(λ) −
√

1430
858

f8,1(λ)

12 13
√

5
210

f0,6(λ) +
√

5
60

f0,3(λ) − 1
28

f0,7(λ) +
√

35
210

f0,5(λ) +
√

14
588

f2,8(λ) +
√

14
168

f2,4(λ)

− 17
√

77
4312

f2,10(λ) +
√

10
336

f2,6(λ) +
√

35
1176

f2,9(λ) +
√

2
84

f2,7(λ)

−
√

70
735

f4,6(λ) −
√

70
210

f4,2(λ) − 27
√

2002
56056

f4,8(λ) +
√

11
1232

f4,5(λ) +
√

154
8624

f4,7(λ)

−
√

10
105

f4,4(λ) +
√

55
3080

f6,3(λ) −
√

77
924

f6,1(λ) −
√

22
924

f6,2(λ) +
√

1430
715

f8,1(λ)

13 13
√

5
210

f0,6(λ) +
√

5
60

f0,3(λ) + 1
21

f0,7(λ) +
√

35
210

f0,5(λ) +
√

14
588

f2,8(λ) +
√

14
168

f2,4(λ)

+ 17
√

77
3234

f2,10(λ) +
√

10
42

f2,6(λ) +
√

35
147

f2,9(λ) +
√

2
84

f2,7(λ)

−
√

70
735

f4,6(λ) −
√

70
210

f4,2(λ) + 9
√

2002
14014

f4,8(λ) +
√

11
154

f4,5(λ) +
√

154
1078

f4,7(λ)

−
√

10
105

f4,4(λ) −
√

55
2310

f6,3(λ) − 2
√

77
231

f6,1(λ) − 2
√

22
231

f6,2(λ) − 4
√

1430
2145

f8,1(λ)

18 18 3
√

5
280

f0,6(λ) + 1
42

f0,7(λ) − 3
√

14
392

f2,8(λ) + 2
√

77
1617

f2,10(λ) +
√

35
196

f2,9(λ)

+ 3
√

70
3920

f4,6(λ) −
√

2002
2548

f4,8(λ) − 9
√

154
2156

f4,7(λ) −
√

55
210

f6,3(λ) +
√

22
308

f6,2(λ)

+
√

1430
2145

f8,1(λ)

18 19
√

5
140

f0,6(λ)− 1
84

f0,7(λ) +
√

35
280

f0,5(λ)−
√

14
196

f2,8(λ)−
√

77
1617

f2,10(λ) +
√

10
168

f2,6(λ)

+
√

35
2352

f2,9(λ) −
√

2
56

f2,7(λ) +
√

70
1960

f4,6(λ) +
√

2002
5096

f4,8(λ) − 3
√

11
308

f4,5(λ)

− 3
√

154
8624

f4,7(λ) +
√

10
560

f4,4(λ) +
√

55
420

f6,3(λ) +
√

77
924

f6,1(λ) +
√

22
3696

f6,2(λ)

−
√

1430
4290

f8,1(λ)

18 21 −
√

5
70

f0,6(λ)+ 1
42

f0,7(λ)+
√

35
280

f0,5(λ)+
√

14
98

f2,8(λ)+ 2
√

77
1617

f2,10(λ)+
√

10
168

f2,6(λ)

−
√

35
1176

f2,9(λ) −
√

2
56

f2,7(λ) −
√

70
980

f4,6(λ) −
√

2002
2548

f4,8(λ) − 3
√

11
308

f4,5(λ)

+ 3
√

154
4312

f4,7(λ) +
√

10
560

f4,4(λ) −
√

55
210

f6,3(λ) +
√

77
924

f6,1(λ) −
√

22
1848

f6,2(λ)

+
√

1430
2145

f8,1(λ)

19 19
√

5
210

f0,6(λ) +
√

5
60

f0,3(λ) + 1
21

f0,7(λ) +
√

35
210

f0,5(λ) −
√

14
294

f2,8(λ)

−
√

14
84

f2,4(λ) − 47
√

77
6468

f2,10(λ) −
√

10
168

f2,6(λ) −
√

35
588

f2,9(λ) −
√

2
42

f2,7(λ)

+
√

70
2940

f4,6(λ) +
√

70
840

f4,2(λ) + 87
√

2002
112112

f4,8(λ) + 3
√

11
308

f4,5(λ)

+ 3
√

154
2156

f4,7(λ) +
√

10
420

f4,4(λ) − 5
√

55
1848

f6,3(λ) −
√

77
924

f6,1(λ) −
√

22
924

f6,2(λ)

+
√

1430
6864

f8,1(λ)
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Table 3.13 (Cont.)

I I′ fII′ (λ)

19 21 −
√

5
105

f0,6(λ) +
√

5
60

f0,3(λ) − 1
84

f0,7(λ) −
√

35
420

f0,5(λ) +
√

14
147

f2,8(λ) −
√

14
84

f2,4(λ)

−
√

77
1617

f2,10(λ)+
√

10
336

f2,6(λ)+
√

35
294

f2,9(λ)+
√

2
84

f2,7(λ)−
√

70
1470

f4,6(λ)+
√

70
840

f4,2(λ)

+
√

2002
5096

f4,8(λ) − 3
√

11
616

f4,5(λ) − 3
√

154
1078

f4,7(λ) −
√

10
840

f4,4(λ) +
√

55
420

f6,3(λ)

+
√

77
1848

f6,1(λ) +
√

22
462

f6,2(λ) −
√

1430
4290

f8,1(λ)

21 21 2
√

5
105

f0,6(λ) +
√

5
60

f0,3(λ) + 1
42

f0,7(λ) −
√

35
105

f0,5(λ) − 2
√

14
147

f2,8(λ) −
√

14
84

f2,4(λ)

+ 2
√

77
1617

f2,10(λ)+
√

10
84

f2,6(λ)−
√

35
147

f2,9(λ)+
√

2
21

f2,7(λ)+
√

70
735

f4,6(λ)+
√

70
840

f4,2(λ)

−
√

2002
2548

f4,8(λ) − 3
√

11
154

f4,5(λ) + 3
√

154
539

f4,7(λ) −
√

10
210

f4,4(λ) −
√

55
210

f6,3(λ)

+
√

77
462

f6,1(λ) −
√

22
231

f6,2(λ) +
√

1430
2145

f8,1(λ)

f10,13(λ) = f14,17(λ), f11,11(λ) = f15,15(λ),

f12,13(λ) = f16,17(λ), f13,13(λ) = f17,17(λ),

f18,19(λ) = f18,20(λ), f19,19(λ) = f20,20(λ),

f19,21(λ) = f20,21(λ),

and

f1,3(λ) = −f1,1(λ) + 8f5,5(λ) − 2f8,8(λ) + 4f1,8(λ),

f1,4(λ) = f3,6(λ) = f1,6(λ) − 4f18,19(λ),

f1,5(λ) = f3,5(λ) =
1
2
f1,1(λ) − 2f19,19(λ) − 1

2
f1,8(λ),

f1,9(λ) = f3,7(λ) = f1,7(λ) − 4f19,21(λ),

f2,8(λ) = f1,2(λ) − 2f2,5(λ),

f4,6(λ) = f4,4(λ) − 2f18,18(λ),

f4,7(λ) = f6,9(λ) = f4,9(λ) − 2f18,21(λ),

f4,8(λ) = f6,8(λ) = f1,6(λ) − 2f4,5(λ) − 2f18,19(λ),

f5,8(λ) − 1
2
f1,1(λ) + 2f5,5(λ) − f8,8(λ) + 2f19,19(λ) +

3
2
f1,8(λ),

f7,8(λ) = f8,9(λ) = f1,7(λ) − 2f5,7(λ) − 2f19,21(λ),

f7,9(λ) = f7,7(λ) − 2f21,21(λ),

f10,12(λ) = f14,16(λ) = −1
2
f11,11(λ) +

1
2
f12,12(λ) − f10,11(λ),

f11,12(λ) = f15,16(λ) = −2f10,10(λ) +
1
2
f11,11(λ) +

1
2
f12,12(λ),

f11,13(λ) = f15,17(λ) = f12,13(λ) − 2f10,13(λ),

f19,20(λ) =
1
2
f1,1(λ) − 2f5,5(λ) +

1
2
f8,8(λ) − f19,19(λ) − f1,8(λ).



3.8 The Case of Rank 4 215

Let ui(λ), 1 ≤ i ≤ 29, be the following functions.

u1(λ) = 2f1,1(λ), u2(λ) = f2,2(λ), u3(λ) = 2f4,4(λ),

u4(λ) = f5,5(λ), u5(λ) = 2f7,7(λ), u6(λ) = f8,8(λ),

u7(λ) = f1,2(λ), u8(λ) = f1,6(λ), u9(λ) = f1,7(λ),

u10(λ) = f1,8(λ), u11(λ) = f2,4(λ), u12(λ) = f2,5(λ),

u13(λ) = f2,7(λ), u14(λ) = f4,5(λ), u15(λ) = f4,9(λ),

u16(λ) = f5,9(λ), u17(λ) = 2f10,10(λ), u18(λ) = 2f11,11(λ),

u19(λ) = 2f12,12(λ), u20(λ) = 2f13,13(λ), u21(λ) = f10,11(λ),

u22(λ) = f10,13(λ), u23(λ) = f12,13(λ), u24(λ) = f18,18(λ),

u25(λ) = 2f19,19(λ), u26(λ) = f21,21(λ), u27(λ) = f18,19(λ),

u28(λ) = f18,21(λ), u29(λ) = f19,21(λ).

Define the functions vi(λ), 1 ≤ i ≤ 26, by

vi(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(λ)
u1(λ)+···+u6(λ) , if 1 ≤ i ≤ 5

ui+1(λ)
u1(λ)+···+u6(λ) , if 6 ≤ i ≤ 15

ui+1(λ)
u17(λ)+···+u20(λ) , if 16 ≤ i ≤ 18

ui+2(λ)
u17(λ)+···+u20(λ) , if 19 ≤ i ≤ 21

ui+2(λ)
u24(λ)+u25(λ)+u26(λ) , if 22 ≤ i ≤ 23

ui+3(λ)
u24(λ)+u25(λ)+u26(λ) , if 24 ≤ i ≤ 26.

The set C0 of the possible values of the function f(λ) is a convex compact. The
set of extreme points of C0 consists of three connected components. The first one
is the 14-dimensional boundary of the 15-dimensional set of all 9× 9 symmetric
non-negative-definite matrices with unit trace with coordinates v1(λ), . . . , v15(λ).
The second one is the five-dimensional boundary of the six-dimensional set of all
4× 4 symmetric non-negative-definite matrices with unit trace with coordinates
v16(λ), . . . , v21(λ). Finally, the third one is the four-dimensional boundary of the
five-dimensional set of all 4 × 4 symmetric non-negative-definite matrices with
unit trace with coordinates v22(λ), . . . , v26(λ).

The functions f2t,v(λ) are expressed in terms of ui(λ) according to Table 3.14.
Substitute these values in (3.97). We obtain the matrix entries fi···l′(p)

expresses in terms of ui(λ) andMn,m(p). Using Table 3.12, we express fi···l′(p) in
terms of ui(λ) and Lqi···l′(p). Substitute the obtained expression into the familiar
equation

〈C(x),C(y)〉 =
∫

Ê3
ei(p,y−x)f(p) dΩ dΦ(λ)

and use the Rayleigh expansion (2.62). To formulate the result, we need more
notation.
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Table 3.14 The functions f2t,v(λ).

Function Value

1 2

f0,1(λ) 1
9
u2(λ) + 16

9
u4(λ) + 8

9
u5(λ) + 8

9
u7(λ) + 32

9
u9(λ) + 16

9
u10(λ)

− 8
9
u12(λ) + 8

9
u13(λ) − 32

9
u16(λ) − 16

9
u26(λ) − 64

9
u29(λ)

f0,2(λ) 2
√

2
9
√

5
u2(λ) + 56

√
2

9
√

5
u4(λ) − 8

√
2

9
√

5
u5(λ) − 8

√
2

3
√

5
u6(λ) + 2

√
10

9
u7(λ)

+ 16
√

2
3
√

5
u8(λ) − 8

√
2

9
√

5
u9(λ) + 32

√
2

9
√

5
u10(λ) + 4

√
2

3
√

5
u11(λ) + 2

√
2

9
√

5
u12(λ)

+ 4
√

2
9
√

5
u13(λ) − 16

√
2

3
√

5
u14(λ) + 16

√
2

3
√

5
u15(λ) + 56

√
2

9
√

5
u16(λ) + 16

√
2

9
√

5
u26(λ)

− 32
√

2
3
√

5
u27(λ) − 16

√
2

3
√

5
u28(λ) + 16

√
2

9
√

5
u29(λ)

f0,3(λ) 4
3
√

5
u1(λ) + 4

9
√

5
u2(λ) − 16

√
5

9
u4(λ) + 2

9
√

5
u5(λ) + 8

3
√

5
u6(λ)

− 16
9
√

5
u7(λ) − 16

9
√

5
u9(λ) − 32

9
√

5
u10(λ) + 16

9
√

5
u12(λ) + 8

9
√

5
u13(λ)

+ 16
9
√

5
u16(λ) − 16

3
√

5
u17(λ) + 8

3
√

5
u18(λ) + 8

3
√

5
u19(λ) + 4

3
√

5
u20(λ)

− 32
3
√

5
u22(λ) + 32

3
√

5
u23(λ) + 4

√
5

9
u26(λ) + 128

9
√

5
u29(λ)

f0,4(λ) 2
5
u1(λ) + 4

45
u2(λ) + 8

5
u3(λ) + 52

45
u4(λ) + 8

45
u5(λ) + 4

15
u6(λ)

+ 8
45

u7(λ) + 16
15

u8(λ) − 16
45

u9(λ) − 44
45

u10(λ) + 16
15

u11(λ) + 8
9
u12(λ)

− 16
45

u13(λ) + 16
3

u14(λ) − 32
15

u15(λ) − 16
9

u16(λ) − 16
5

u24(λ) − 8
5
u25(λ)

− 16
45

u26(λ) − 32
15

u27(λ) + 32
15

u28(λ) + 32
45

u29(λ)

f0,5(λ) 8
3
√

35
u1(λ) + 8

9
√

35
u2(λ) − 16

√
7

9
√

5
u4(λ) − 8

9
√

35
u5(λ) − 8

9
√

35
u7(λ)

− 16
3
√

35
u8(λ) + 8

√
5

9
√

7
u9(λ) − 64

9
√

35
u10(λ) + 8

3
√

35
u11(λ) − 8

√
5

9
√

7
u12(λ)

− 8
9
√

35
u13(λ) + 16

3
√

35
u14(λ) + 8

3
√

35
u15(λ) − 88

9
√

35
u16(λ)

+ 16
3
√

35
u17(λ) − 32

3
√

35
u18(λ) + 16

3
√

35
u19(λ) + 8

3
√

35
u20(λ)

+ 16
√

5
21

√
7
u22(λ) + 16

3
√

35
u23(λ) − 16

√
5

9
√

7
u26(λ) + 128

3
√

35
u27(λ) + 8

√
5

3
√

7
u28(λ)

− 176
9
√

35
u29(λ)

f0,6(λ) 4
√

5
21

u1(λ) + 8
63

√
5
u2(λ) + 4

7
√

5
u3(λ) − 8

√
5

9
u4(λ) + 16

63
√

5
u5(λ)

+ 8
3
√

5
u6(λ) + 16

63
√

5
u7(λ) + 16

21
√

5
u8(λ) − 32

63
√

5
u9(λ) − 8

√
5

9
u10(λ)

+ 16
21

√
5
u11(λ) − 16

9
√

5
u12(λ) − 32

63
√

5
u13(λ) − 16

3
√

5
u14(λ) − 32

21
√

5
u15(λ)

+ 32
9
√

5
u16(λ) + 136

21
√

5
u17(λ) − 8

21
√

5
u18(λ) + 16

21
√

5
u19(λ) + 8

21
√

5
u20(λ)

− 96
7
√

5
u21(λ) + 32

3
√

5
u22(λ) − 32

21
√

5
u23(λ) + 8

√
5

7
u24(λ) − 16

7
√

5
u25(λ)

+ 32
√

5
63

u26(λ) + 32
√

5
21

u27(λ) − 32
√

5
21

u28(λ) − 64
√

5
63

u29(λ)

f0,7(λ) − 59
105

u1(λ) + 8
105

u2(λ) + 64
105

u3(λ) + 24
5

u4(λ) + 16
105

u5(λ) − 6
5
u6(λ)

+ 16
105

u7(λ) − 64
105

u8(λ) − 32
105

u9(λ) + 12
5

u10(λ) − 64
105

u11(λ) − 32
105

u13(λ)

+ 128
105

u15(λ) + 16
7

u17(λ) + 4
7
u18(λ) + 4

21
u19(λ) + 16

21
u20(λ) + 32

7
u21(λ)

− 64
21

u23(λ) + 64
35

u24(λ) + 92
35

u25(λ) + 16
35

u26(λ) − 64
35

u27(λ) + 64
35

u28(λ)

− 32
35

u29(λ)

f2,1(λ) 2
√

2
9

u2(λ) − 16
√

2
9

u4(λ) + 4
√

2
9

u5(λ) + 4
√

2
9

u7(λ) − 8
√

2
9

u9(λ)

− 16
√

2
9

u10(λ) − 4
√

2
9

u12(λ) + 10
√

2
9

u13(λ) + 8
√

2
9

u16(λ) − 8
√

2
9

u26(λ)

+ 16
√

2
9

u29(λ)
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Table 3.14 (Cont.)

Function Value

f2,2(λ) 4
√

2
9
√

5
u2(λ) − 56

√
2

9
√

5
u4(λ) − 4

√
2

9
√

5
u5(λ) + 8

√
2

3
√

5
u6(λ) − 4

√
2

9
√

5
u7(λ)

− 16
√

2
3
√

5
u8(λ) + 4

√
10

9
u9(λ) − 32

√
2

9
√

5
u10(λ) + 8

√
2

3
√

5
u11(λ) + 28

√
2

9
√

5
u12(λ)

− 4
√

2
9
√

5
u13(λ) + 16

√
2

3
√

5
u14(λ) + 8

√
2

3
√

5
u15(λ) + 4

√
2

9
√

5
u16(λ) + 8

√
2

9
√

5
u26(λ)

+ 32
√

2
3
√

5
u27(λ) − 8

√
2

3
√

5
u28(λ) − 8

√
10

9
u29(λ)

f2,3(λ) 4
9
√

7
u2(λ) − 80

9
√

7
u4(λ) − 16

9
√

7
u5(λ) + 16

3
√

7
u6(λ) + 20

9
√

7
u7(λ)

+ 16
3
√

7
u8(λ) − 16

9
√

7
u9(λ) − 32

9
√

7
u10(λ) + 4

3
√

7
u11(λ) − 44

9
√

7
u12(λ)

+ 8
9
√

7
u13(λ) − 16

3
√

7
u14(λ) + 16

3
√

7
u15(λ) − 80

9
√

7
u16(λ) + 32

9
√

7
u26(λ)

− 32
3
√

7
u27(λ) − 16

3
√

7
u28(λ) + 32

9
√

7
u29(λ)

f2,4(λ) − 4
√

2
3
√

7
u1(λ) + 4

√
2

9
√

7
u2(λ) + 16

√
14

9
u4(λ) + 2

√
2

9
√

7
u5(λ) − 8

√
2

3
√

7
u6(λ)

− 16
√

2
9
√

7
u7(λ) − 16

√
2

9
√

7
u9(λ) + 64

√
2

9
√

7
u10(λ) + 16

√
2

9
√

7
u12(λ) + 8

√
2

9
√

7
u13(λ)

+ 16
√

2
9
√

7
u16(λ) − 8

√
2

3
√

7
u17(λ) + 4

√
2

3
√

7
u18(λ) + 4

√
2

3
√

7
u19(λ) + 2

√
2

3
√

7
u20(λ)

− 16
√

2
3
√

7
u22(λ) + 16

√
2

3
√

7
u23(λ) − 4

√
14

9
u26(λ) − 64

√
2

9
√

7
u29(λ)

f2,5(λ) − 4√
35

u1(λ) + 8
9
√

35
u2(λ) + 8√

35
u3(λ) + 8

9
√

35
u4(λ) + 16

9
√

35
u5(λ)

− 8√
35

u6(λ) + 16
9
√

35
u7(λ) + 8√

35
u8(λ) − 32

9
√

35
u9(λ) + 152

9
√

35
u10(λ)

+ 8√
35

u11(λ) − 16
9
√

35
u12(λ) − 32

9
√

35
u13(λ) − 24√

35
u14(λ) − 16√

35
u15(λ)

+ 32
9
√

35
u16(λ) − 16√

35
u24(λ) + 16√

35
u25(λ) − 32

9
√

35
u26(λ) − 16√

35
u27(λ)

+ 16√
35

u28(λ) + 64
9
√

35
u29(λ)

f2,6(λ) − 2
√

10
21

u1(λ) + 8
√

2
21

√
5
u2(λ) + 16

√
2

7
√

5
u4(λ) − 8

√
2

21
√

5
u5(λ) − 4

√
2

7
√

5
u6(λ)

− 8
√

2
21

√
5
u7(λ) + 64

√
2

21
√

5
u8(λ) + 8

√
10

21
u9(λ) + 16

√
2

21
√

5
u10(λ) − 32

√
2

21
√

5
u11(λ)

+ 16
√

2
21

√
5
u12(λ) − 8

√
2

21
√

5
u13(λ) − 64

√
2

21
√

5
u14(λ) − 32

√
2

21
√

5
u15(λ)

− 32
√

2
21

√
5
u16(λ) + 16

√
10

21
u17(λ) − 4

√
10

21
u18(λ) − 4

√
10

7
u19(λ)

+ 8
√

10
21

u20(λ) − 32
√

10
21

u22(λ) + 16
√

10
21

u23(λ) + 8
√

2
3
√

5
u26(λ)

+ 32
√

2
21

√
5
u27(λ) + 16

√
2

3
√

5
u28(λ) − 8

√
10

21
u29(λ)

f2,7(λ) − 8
√

2
21

u1(λ) + 8
√

2
63

u2(λ) + 272
√

2
63

u4(λ) − 8
√

2
63

u5(λ) − 32
√

2
21

u6(λ)

− 8
√

2
63

u7(λ) − 16
√

2
21

u8(λ) + 40
√

2
63

u9(λ) + 128
√

2
63

u10(λ) + 8
√

2
21

u11(λ)

− 40
√

2
63

u12(λ) − 8
√

2
63

u13(λ) + 16
√

2
21

u14(λ) + 8
√

2
21

u15(λ) − 88
√

2
63

u16(λ)

+ 8
√

2
21

u17(λ) − 16
√

2
21

u18(λ) + 8
√

2
21

u19(λ) + 4
√

2
21

u20(λ) + 40
√

2
21

u22(λ)

+ 8
√

2
21

u23(λ) + 16
√

2
9

u26(λ) − 64
√

2
21

u27(λ) − 8
√

2
3

u28(λ) + 16
√

2
63

u29(λ)

f2,8(λ) 4
√

2
21

√
7
u1(λ) + 8

√
2

63
√

7
u2(λ) + 4

√
2

7
√

7
u3(λ) + 104

√
2

63
√

7
u4(λ) + 16

√
2

63
√

7
u5(λ)

+ 8
√

2
7
√

7
u6(λ) + 16

√
2

63
√

7
u7(λ) + 16

√
2

21
√

7
u8(λ) − 32

√
2

63
√

7
u9(λ) − 88

√
2

63
√

7
u10(λ)

+ 16
√

2
21

√
7
u11(λ) − 16

√
2

9
√

7
u12(λ) − 32

√
2

63
√

7
u13(λ) − 16

√
2

3
√

7
u14(λ)

− 32
√

2
21

√
7
u15(λ) + 32

√
2

9
√

7
u16(λ) + 68

√
2

21
√

7
u17(λ) − 4

√
2

21
√

7
u18(λ)

+ 8
√

2
21

√
7
u19(λ) + 4

√
2

21
√

7
u20(λ) − 48

√
2

7
√

7
u21(λ) + 16

√
2

3
√

7
u22(λ)

− 16
√

2
21

√
7
u23(λ) − 8

√
2√
7

u24(λ) − 16
√

2
7
√

7
u25(λ) − 32

√
2

9
√

7
u26(λ) − 32

√
2

3
√

7
u27(λ)

+ 32
√

2
3
√

7
u28(λ) + 64

√
2

9
√

7
u29(λ)
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Table 3.14 (Cont.)

Function Value

f2,9(λ) − 32
21

√
35

u1(λ) + 16
21

√
35

u2(λ) − 32
7
√

35
u3(λ) + 32

7
√

35
u4(λ) + 32

21
√

35
u5(λ)

− 8
7
√

35
u6(λ) + 32

21
√

35
u7(λ) − 16

21
√

35
u8(λ) − 64

21
√

35
u9(λ)

+ 104
21

√
35

u10(λ) − 16
21

√
35

u11(λ) − 16
3
√

35
u12(λ) − 64

21
√

35
u13(λ)

+ 64
3
√

35
u14(λ) + 32

21
√

35
u15(λ) + 32

3
√

35
u16(λ) − 64

√
5

21
√

7
u17(λ)

+ 40
√

5
21

√
7
u18(λ) − 8

√
5

7
√

7
u19(λ) + 16

√
5

21
√

7
u20(λ) + 32

√
5

7
√

7
u21(λ) + 32

√
5

3
√

7
u22(λ)

− 64
√

5
21

√
7
u23(λ) + 32√

35
u24(λ) + 16

7
√

35
u25(λ) − 32

3
√

35
u26(λ) + 16

3
√

35
u27(λ)

− 16
3
√

35
u28(λ) + 64

3
√

35
u29(λ)

f2,10(λ) 206
21

√
77

u1(λ) + 16
21

√
77

u2(λ) + 128
21

√
77

u3(λ) − 48
√

11
7
√

7
u4(λ) + 32

21
√

77
u5(λ)

+ 12
√

11
7
√

7
u6(λ) + 32

21
√

77
u7(λ) − 128

21
√

77
u8(λ) − 64

21
√

77
u9(λ)

− 24
√

11
7
√

7
u10(λ) − 128

21
√

77
u11(λ) − 64

21
√

77
u13(λ) + 256

21
√

77
u15(λ)

− 8
√

11
7
√

7
u17(λ) − 2

√
11

7
√

7
u18(λ) + 202

21
√

77
u19(λ) + 136

21
√

77
u20(λ)

− 16
√

11
7
√

7
u21(λ) − 544

21
√

77
u23(λ) − 24

√
11

7
√

7
u25(λ)

f4,1(λ) 4
3
√

35
u2(λ) + 32

3
√

35
u4(λ) − 16

3
√

35
u5(λ) − 8

3
√

35
u6(λ) + 4

√
5

3
√

7
u7(λ)

− 64
3
√

35
u8(λ) − 16

3
√

35
u9(λ) + 8√

35
u10(λ) − 16

3
√

35
u11(λ) − 16

3
√

35
u12(λ)

+ 8
3
√

35
u13(λ) + 64

3
√

35
u14(λ) − 64

3
√

35
u15(λ) + 32

3
√

35
u16(λ)

+ 32
3
√

35
u26(λ) + 128

3
√

35
u27(λ) + 64

3
√

35
u28(λ) + 32

3
√

35
u29(λ)

f4,2(λ) 2
√

2
3
√

35
u1(λ) + 4

√
2

3
√

35
u2(λ) + 2

√
2

3
√

35
u5(λ) + 4

√
2

3
√

35
u6(λ) − 16

√
2

3
√

35
u7(λ)

− 16
√

2
3
√

35
u9(λ) + 8

√
2

3
√

35
u10(λ) + 16

√
2

3
√

35
u12(λ) + 8

√
2

3
√

35
u13(λ) + 16

√
2

3
√

35
u16(λ)

+ 32
√

2
3
√

35
u17(λ) − 16

√
2

3
√

35
u18(λ) − 16

√
2

3
√

35
u19(λ) − 8

√
2

3
√

35
u20(λ)

+ 64
√

2
3
√

35
u22(λ) − 64

√
2

3
√

35
u23(λ) + 16

√
2√

35
u29(λ)

f4,3(λ) 2
5
√

7
u1(λ) + 8

15
√

7
u2(λ) − 32

5
√

7
u3(λ) + 64

15
√

7
u4(λ) + 16

15
√

7
u5(λ)

− 16
15

√
7
u6(λ) + 16

15
√

7
u7(λ) + 16

15
√

7
u8(λ) − 32

15
√

7
u9(λ) + 4

5
√

7
u10(λ)

+ 16
21

√
7
u11(λ) + 8

3
√

7
u12(λ) − 32

15
√

7
u13(λ) − 32

3
√

7
u14(λ) − 32

15
√

7
u15(λ)

− 16
3
√

7
u16(λ) + 64

5
√

7
u24(λ) − 8

5
√

7
u25(λ) − 32

15
√

7
u26(λ) − 32

15
√

7
u27(λ)

+ 32
15

√
7
u28(λ) + 64

15
√

7
u29(λ)

f4,4(λ) 4
√

2
21

√
5
u1(λ) + 8

√
2

21
√

5
u2(λ) + 16

√
2

7
√

5
u4(λ) − 8

√
2

21
√

5
u5(λ) − 8

√
10

21
u6(λ)

− 8
√

2
21

√
5
u7(λ) − 16

√
2

7
√

5
u8(λ) + 8

√
10

21
u9(λ) + 16

√
2

21
√

5
u10(λ) + 8

√
2

7
√

5
u11(λ)

− 8
√

10
21

u12(λ) − 8
√

2
21

√
5
u13(λ) + 16

√
2

7
√

5
u14(λ) + 8

√
2

7
√

5
u15(λ) − 88

√
2

21
√

5
u16(λ)

− 32
√

2
21

√
5
u17(λ) + 64

√
2

21
√

5
u18(λ) − 32

√
2

21
√

5
u19(λ) − 16

√
2

21
√

5
u20(λ)

− 32
√

10
21

u22(λ) − 32
√

2
21

√
5
u23(λ) + 48

√
2

7
√

5
u27(λ) − 32

√
2

7
√

5
u29(λ)

f4,5(λ) 12
7
√

11
u1(λ) + 16

21
√

11
u2(λ) − 32

√
11

21
u4(λ) − 16

21
√

11
u5(λ) + 8

√
11

21
u6(λ)

− 16
21

√
11

u7(λ) + 128
21

√
11

u8(λ) + 80
21

√
11

u9(λ) − 64
7
√

11
u10(λ)

− 64
21

√
11

u11(λ) + 32
21

√
11

u12(λ) − 16
21

√
11

u13(λ) − 128
21

√
11

u14(λ) − 64
21

√
11

u15(λ)

− 64
21

√
11

u16(λ) + 16
7
√

11
u17(λ) − 4

7
√

11
u18(λ) − 12

7
√

11
u19(λ)

+ 8
7
√

11
u20(λ) − 32

7
√

11
u22(λ) + 16

7
√

11
u23(λ) − 16

3
√

11
u26(λ)

− 832
21

√
11

u27(λ) − 32
3
√

11
u28(λ) − 304

21
√

11
u29(λ)
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Table 3.14 (Cont.)

Function Value

f4,6(λ) 8
√

10
21

√
7
u1(λ) + 8

√
2

21
√

35
u2(λ) + 12

√
2

7
√

35
u3(λ) − 8

√
10

7
√

7
u4(λ) + 16

√
2

21
√

35
u5(λ)

+ 128
√

2
21

√
35

u6(λ) + 16
√

2
21

√
35

u7(λ) + 16
√

2
7
√

35
u8(λ) − 32

√
2

21
√

35
u9(λ)

− 40
√

10
21

√
7

u10(λ) + 16
√

2
7
√

35
u11(λ) − 16

√
2

3
√

35
u12(λ) − 32

√
2

21
√

35
u13(λ)

− 16
√

2√
35

u14(λ) − 32
√

2
7
√

35
u15(λ) + 32

√
2

3
√

35
u16(λ) − 272

√
2

21
√

35
u17(λ)

+ 16
√

2
21

√
35

u18(λ) − 32
√

2
21

√
35

u19(λ) − 16
√

2
21

√
35

u20(λ) + 192
√

2
7
√

35
u21(λ) − 64

√
2

3
√

35
u22(λ)

+ 64
√

2
21

√
35

u23(λ) − 48
√

2
7
√

35
u25(λ)

f4,7(λ) 8
√

2
7
√

77
u1(λ) + 16

√
2

21
√

77
u2(λ) − 32

√
2

7
√

77
u3(λ) − 32

√
22

21
√

7
u4(λ) + 32

√
2

21
√

77
u5(λ)

+ 8
√

22
21

√
7
u6(λ) + 32

√
2

21
√

77
u7(λ) − 16

√
2

21
√

77
u8(λ) − 64

√
2

21
√

77
u9(λ) − 40

√
2

7
√

77
u10(λ)

− 16
√

2
21

√
77

u11(λ) − 16
√

2
3
√

77
u12(λ) − 64

√
2

21
√

77
u13(λ) + 64

√
2

3
√

77
u14(λ)

+ 32
√

2
21

√
77

u15(λ) + 32
√

2
3
√

77
u16(λ) − 32

√
2

7
√

77
u17(λ) + 20

√
2

7
√

77
u18(λ)

− 12
√

2
7
√

77
u19(λ) + 8

√
2

7
√

77
u20(λ) + 48

√
2

7
√

77
u21(λ) + 16

√
2√

77
u22(λ)

− 32
√

2
7
√

77
u23(λ) − 32

√
2√

77
u24(λ) + 16

√
2

7
√

77
u25(λ) + 32

√
2

3
√

77
u26(λ)

− 16
√

2
3
√

77
u27(λ) + 16

√
2

3
√

77
u28(λ) − 64

√
2

3
√

77
u29(λ)

f4,8(λ) − 536
√

2
35

√
1001

u1(λ) + 72
√

2
35

√
1001

u2(λ) + 576
√

2
35

√
1001

u3(λ) + 32
√

286
35

√
7

u4(λ)

+ 144
√

2
35

√
1001

u5(λ) − 8
√

286
35

√
7

u6(λ) + 144
√

2
35

√
1001

u7(λ) − 576
√

2
35

√
1001

u8(λ)

− 288
√

2
35

√
1001

u9(λ) − 16
√

286
35

√
7

u10(λ) − 576
√

2
35

√
1001

u11(λ) − 288
√

2
35

√
1001

u13(λ)

+ 1152
√

2
35

√
1001

u15(λ) − 48
√

26
7
√

77
u17(λ) − 12

√
26

7
√

77
u18(λ) + 228

√
2

7
√

1001
u19(λ)

+ 72
√

2
7
√

1001
u20(λ) − 96

√
26

7
√

77
u21(λ) − 288

√
2

7
√

1001
u23(λ) − 32

√
26

5
√

77
u24(λ)

+ 148
√

26
35

√
77

u25(λ) − 8
√

26
5
√

77
u26(λ) + 32

√
26

5
√

77
u27(λ) − 32

√
26

5
√

77
u28(λ)

+ 16
√

26
5
√

77
u29(λ)

f6,1(λ) − 4
3
√

77
u1(λ) + 8

3
√

77
u2(λ) − 8

3
√

77
u5(λ) − 8

3
√

77
u7(λ) + 64

3
√

77
u8(λ)

+ 40
3
√

77
u9(λ) − 8

3
√

77
u10(λ) − 32

3
√

77
u11(λ) + 16

3
√

77
u12(λ) − 8

3
√

77
u13(λ)

− 64
3
√

77
u14(λ) − 32

3
√

77
u15(λ) − 32

3
√

77
u16(λ) − 64

3
√

77
u17(λ)

+ 16
3
√

77
u18(λ) + 16√

77
u19(λ) − 32

3
√

77
u20(λ) + 128

3
√

77
u22(λ) − 64

3
√

77
u23(λ)

+ 32
3
√

77
u26(λ) − 64

3
√

77
u27(λ) + 64

3
√

77
u28(λ) − 64

3
√

77
u29(λ)

f6,2(λ) − 10
√

2
21

√
11

u1(λ) + 8
√

2
21

√
11

u2(λ) − 16
√

2
7
√

11
u3(λ) + 16

√
2

21
√

11
u5(λ) + 16

√
2

21
√

11
u7(λ)

− 8
√

2
21

√
11

u8(λ) − 32
√

2
21

√
11

u9(λ) + 4
√

2
3
√

11
u10(λ) − 8

√
2

21
√

11
u11(λ)

− 8
√

2
3
√

11
u12(λ) − 32

√
2

21
√

11
u13(λ) + 32

√
2

3
√

11
u14(λ) + 16

√
2

3
√

11
u15(λ)

+ 16
√

2
3
√

11
u16(λ) + 128

√
2

21
√

11
u17(λ) − 80

√
2

21
√

11
u18(λ) + 16

√
2

7
√

11
u19(λ)

− 32
√

2
21

√
11

u20(λ) − 64
√

2
7
√

11
u21(λ) − 64

√
2

3
√

11
u22(λ) + 128

√
2

21
√

11
u23(λ)

+ 64
√

2
7
√

11
u24(λ) + 8

√
2

7
√

11
u25(λ) − 64

√
2

21
√

11
u26(λ) + 32

√
2

21
√

11
u27(λ)

− 32
√

2
21

√
11

u28(λ) + 128
√

2
21

√
11

u29(λ)
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Table 3.14 (Cont.)

Function Value

f6,3(λ) 8
21

√
55

u1(λ) + 16
21

√
55

u2(λ) + 128
21

√
55

u3(λ) + 32
21

√
55

u5(λ) + 32
21

√
55

u7(λ)

− 128
21

√
55

u8(λ) − 64
21

√
55

u9(λ) − 128
21

√
55

u11(λ) − 64
21

√
55

u13(λ)

+ 256
21

√
55

u15(λ) + 32
√

5
7
√

11
u17(λ) + 8

√
5

7
√

11
u18(λ) − 128

21
√

55
u19(λ)

− 8
21

√
55

u20(λ) + 64
√

5
7
√

11
u21(λ) + 32

21
√

55
u23(λ) − 64

√
5

7
√

11
u24(λ)

− 8
√

5
7
√

11
u25(λ) − 16

√
5

7
√

11
u26(λ) + 64

√
5

7
√

11
u27(λ) − 64

√
5

7
√

11
u28(λ)

+ 32
√

5
7
√

11
u29(λ)

f8,1(λ) 4
√

2
3
√

715
u1(λ) + 8

√
2

3
√

715
u2(λ) + 64

√
2

3
√

715
u3(λ) + 16

√
2

3
√

715
u5(λ) + 16

√
2

3
√

715
u7(λ)

− 64
√

2
3
√

715
u8(λ) − 32

√
2

3
√

715
u9(λ) − 64

√
2

3
√

715
u11(λ) − 32

√
2

3
√

715
u13(λ)

+ 128
√

2
3
√

715
u15(λ) − 64

√
2

3
√

715
u19(λ) − 64

√
2

3
√

715
u20(λ) + 256

√
2

3
√

715
u23(λ)

Let < be the lexicographic order on the sequences tuijkl, where ijkl are indices
that numerate the 21 component of the elasticity tensor, t ≥ 0, and −t ≤ u ≤ t.
Consider the infinite symmetric positive definite matrices given by

bt
′u′i′j′k′l′
tuijkl (m) = it

′−t√(2t+ 1)(2t′ + 1)
4∑

n=0

1
4n+ 1

g
0[0,0]
2n[t,t′]

×
mn∑
q=1

anqm

2n∑
v=−2n

T 2n,q,v
i···l′ g

v[u,u′]
2n[t,t′]

with 1 ≤ m ≤ 13. Let L(m) be the infinite lower triangular matrices
of the Cholesky factorisation of the matrices bt

′u′i′j′k′l′
tuijkl (m) constructed in

Hansen (2010). Let Z ′
mtuijkl be the sequence of centred scattered random

measures with Φm as their control measures. Define

Zmtuijkl =
∑

(t′u′i′j′k′l′)≤(tuijkl)

Lt
′u′i′j′k′l′
tuijkl (m)Z ′

mtuijkl.

Theorem 36. The one-point correlation tensor of a homogeneous and
(O(3), 2ρ0 ⊕ 2ρ2 ⊕ ρ4)-isotropic random field C(x) has the form

〈C(x)〉 = C1T
0,1 + C2T

0,2, Cm ∈ R,

where the tensors T 0,1 and T 0,2 are given by (3.65) and (3.67). Its two-point
correlation tensor has the form

〈C(x),C(y)〉 =
3∑

n=1

∫ ∞

0

29∑
q=1

Nnq(λ, ρ)L
q
iikli′j′k′l′(y − x) dΦn(λ). (3.98)

The functions Nnq(λ, ρ) are given in Malyarenko & Ostoja-Starzewski (2016a,
Table 5). The measures Φn(λ) satisfy the condition
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Φ2({0}) = 2Φ3({0}). (3.99)

The spectral expansion of the field has the form

Cijkl(ρ, θ, ϕ) = C1δijδkl + C2(δikδjl + δilδjk)

+ 2
√
π

13∑
m=1

∞∑
t=0

t∑
u=−t

∫ ∞

0

jt(λρ) dZmtuijkl(λ)Sut (θ, ϕ).

Proof. Equations (3.65) and (3.71) show that the tensors T 0,1 and T 0,2 are linear
combinations of the tensors δijδkl and δikδjl+δilδjk. It follows that the expected
value of the field may be represented as a linear combination of either the first
or the second pair of tensors. In the second variant, the constants C1 and C2

have physical sense: they are Lamé parameters.
To prove (3.99), note that

dΦ1(λ) = (u1(λ) + · · · + u6(λ)) dΩ dΦ(λ),

dΦ2(λ) = (u17(λ) + · · · + u20(λ)) dΩ dΦ(λ),

dΦ3(λ) = (u24(λ) + · · · + u26(λ)) dΩ dΦ(λ).

Using Table 3.13, we obtain

u17(0) + · · · + u20(0) =
1

2
√

5
f0,3(0) +

11
28
√

5
f0,6(0) +

2
7
f0,7(0),

u24(0) + · · · + u26(0) =
1

4
√

5
f0,3(0) +

11
56
√

5
f0,6(0) +

1
7
f0,7(0),

which proves (3.99). The spectral expansion follows from Karhunen’s theorem.

3.9 Bibliographical Remarks

Let G be a topological group continuously acting on a topological space T . There
exist precise links between the following areas:

● the theory of G-invariant positive-definite functions on T ;
● the theory of G-invariant random fields on T ;
● the theory of orthogonal and unitary representations of G.

These links are described in the books by Diaconis (1988) and Hannan (1965).
For example, Theorem 14 was proved by Schoenberg (1938) as a result about
invariant positive-definite functions.

Let r ≥ 2 be a positive integer. The tensor power V ⊗r carries the orthogonal
representations of two different groups: a subgroup G of the group O(V ) and a
subgroup Σ of the group Σr. The representation ρr of G is the rth tensor power
of its defining representation, while the representation σ of Σ acts on V r by
(2.7). It is clear that ρr(g) commutes with σr(σ) for all g ∈ G and σ ∈ Σ. Then,
the mapping
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(σ, g) �→ ρr(g)σr(σ) (3.100)

is an orthogonal representation of the Cartesian product Σ ×G. This represen-
tation is equivalent to a direct sum of outer tensor products of the irreducible
orthogonal representations of the groups Σ and G.

Consider a particular case, whenΣ = Σr. Fix an irreducible representation τ of
the group Σ and consider the direct sum Wτ of all spaces where the outer tensor
products of the representation τ by an irreducible orthogonal representation of
the group G act. If τ = τ0 is the trivial representation, then Wτ0 is the linear
space of all symmetric tensors. If τ = ε is the sign of the permutation σ, then
Wε is the linear space of all skew-symmetric tensors.

For example, when V = R3, G = O(3) and r = 2, the representation (3.100)
is equivalent to the direct sum:

τ0⊗̂ρ0,+ ⊕ τ0⊗̂ρ2,+ ⊕ ε⊗̂ρ1,+.

The space of the first irreducible component is the linear span of the identity
matrix, that of the second component is the space of symmetric traceless matri-
ces. Their direct sum is Wτ0 = S2(V ). The space of the third component is the
space of skew-symmetric matrices, Wε = Λ2(V ).

When r ≥ 3, the structure of the representation (3.100) becomes more com-
plicated; see Goodman & Wallach (2009). In particular, the representations τ of
dimension more than 1 appear. The space Wτ still carries an orthogonal repre-
sentation ρ of the group G, and we can formulate the (G, ρ)-problem: to find the
general form of the one-point and two-point correlation tensors of the W -valued
homogeneous and (G, ρ)-isotropic random field.

There exist several notations for point groups and general classes, includ-
ing Hermann–Mauguin symbols introduced by Hermann (1928) and Mauguin
(1931) and used in crystallography, Schönfließ symbols introduced by Schönfließ
(1891) and used in spectroscopy, see also Brock (2014). We use mathematical
symbols described by Olive & Auffray (2014, Section 2.3). The correspondence
between the three systems of symbols may be found in Olive & Auffray (2014,
Appendix B).

The complete solution to the (O(d), 1)-problem was obtained by Yaglom (1961)
and independently by M. Ĭ. Yadrenko in his unpublished PhD thesis.

Theorem 18 was proved by Robertson (1940). Theorem 19 was proved by
Yaglom (1948) and Yaglom (1957). The spectral expansion of Theorems 25 and
20 appeared in Malyarenko & Ostoja-Starzewski (2016b).

In the case of rank 2, a partial solution (Theorem 24) was given by Lomakin
(1964). The complete solution has been proposed by Malyarenko & Ostoja-
Starzewski (2016b). The classification of symmetry classes is a classical result.
Random fields related to these classes were described by the authors in a
manuscript that will be published elsewhere.



4

Tensor Random Fields in Continuum Theories

As discussed in the Introduction and Chapter 1, the goal is to develop mod-
els of mesoscale TRFs of dependent quantities and constitutive responses. Two
paradigms depicted in Figures 1.1 and 1.4 show the upscaling from a random
two-phase microstructure, via the SVE playing the rôle of a continuum point, to
a random field on macroscale. In Section 4.1 we outline a strategy for simulation
of TRFs of various ranks, where arbitrary correlation structures (of Chapter 3)
can be introduced. Next, in Section 4.2 two different concepts of ergodic TRFs
are elaborated. In Sections 4.3–4.6, the consequences of field equations on depen-
dent fields of various ranks (in 2D or 3D) in classical and micropolar continua
are discussed. Section 4.7 focuses on the constitutive elastic-type responses, with
two applications to stochastic partial differential equations then covered in Sec-
tion 4.8. An application of TRFs to modelling stochastic damage phenomena is
discussed in Section 4.9. Whereas nearly the entire book has focused on homoge-
neous and isotropic fields, as shown in Section 4.10, our tools can be extended to
inhomogeneous and isotropic TRFs. The chapter ends with a very short selection
of future research directions; many other possibilities exist.

4.1 Simulation of Homogeneous and Isotropic TRFs

4.1.1 Strategy

As an example, consider simulation of a homogeneous random field on R3 that
takes values in the space S2(R3) of symmetric 3 × 3 matrices and is isotropic
with respect to the orthogonal representation g �→ S2(g) of the group O(3). By
Theorem 25, the expected value of the field is equal to Cδij , which is easy to
simulate. In what follows, we will simulate a centred random field.

According to the proof of Theorem 25, the set of all possible values of the
function f(λ), when λ > 0, is a compact convex set C0 whose set of extreme
points has three connected components: two one-point sets and an ellipse. In
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order to simplify the formula for the rank 2 correlation tensor of the field, use
the following idea. Inscribe a simplex into C0 and assume that the function
f(λ) takes values inside this simplex. The formula that describes the rank 2
correlation tensor of such a field, does not contain arbitrary functions but gives
only sufficient condition for the field to be homogeneous and isotropic. The more
the four-dimensional Lebesgue measure of the simplex approaches that of C0, the
closer is our sufficient condition to the necessary one. In other words, we have
to inscribe a simplex of maximal possible Lebesgue measure into C0.

Two of the extreme points of the simplex under question are known, these
are the one-point components of the set of extreme points of C0. We must then
inscribe a triangle of maximal possible area into an ellipse. The solution to this
problem is well known; see Niven (1981, Theorem 7.3b). Taking any point on
the ellipse x2/a2 + y2/b2 = 1 with coordinates (a cos θ, b sin θ) as one of the
triangle’s vertices, we find the coordinates of the remaining vertices as (a cos(θ+
2kπ/3, b sin(θ + 2kπ/3) with k = 1, 2.

Choose the following points on the ellipse 4(v1(λ) − 1/2)2 + 8v2
2(λ) = 1 (see

(3.77)): (1, 0), (1/4,
√

3/(4
√

2)) and (1/4,−
√

3/(4
√

2)). The matrix f(λ), λ > 0,
takes the form

f(λ) =
5∑
k=1

uk(λ)Dk,

where the symmetric non-negative-definite 6 × 6 matrices Dk with unit trace
have the following non-zero elements lying on and over the main diagonal:

D1
44 = D1

66 =
1
2
,

D2
11 = D2

33 = D2
55 =

1
3
, D2

13 = −1
3
,

D3
11 = D3

33 = D3
13 =

1
2
,

D4
11 = D4

33 = D4
13 =

1
8
, D4

22 =
3
4
, D4

12 = D4
23 =

√
3

4
√

2
,

D5
11 = D5

33 = D5
13 =

1
8
, D5

22 =
3
4
, D5

12 = D5
23 = −

√
3

4
√

2
.

The non-zero elements of the matrix f(λ) lying on and over the main diagonal
are

f11(λ) = f33(λ) =
1
3
u2(λ) +

1
2
u3(λ) +

1
8
(u4(λ) + u5(λ)),

f12(λ) = f23(λ) =
√

3
4
√

2
(u4(λ) − u5(λ)),

f13(λ) = −1
3
u2(λ) +

1
2
u3(λ) +

1
8
(u4(λ) + u5(λ)),

f22(λ) =
3
4
(u4(λ) + u5(λ)),
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f44(λ) = f66(λ) =
1
2
u1(λ),

f55(λ) =
1
3
u2(λ).

Inverting (3.73) and taking the last display into account, we obtain

f1(λ) =
2
3
u3(λ) +

5 + 2
√

6
12

u4(λ) +
5 − 2

√
6

12
u5(λ),

f2(λ) =
2√
5
u1(λ) +

4
3
√

5
u2(λ) +

1
3
√

5
u3(λ) +

7 − 2
√

6
12
√

5
u4(λ)

+
7 + 2

√
6

12
√

5
u5(λ),

f3(λ) = −2
3
u3(λ) +

2
√

2 +
√

3
6
√

2
u4(λ) +

2
√

2 −
√

3
6
√

2
u5(λ),

f4(λ) =
√

2√
7
u1(λ) − 4

√
2

3
√

7
u2(λ) +

√
2

3
√

7
u3(λ) +

7
√

3 − 6
√

2
6
√

42
u4(λ)

+
7
√

3 + 6
√

2
6
√

42
u5(λ),

f5(λ) = −4
√

2√
35
u1(λ) +

2
√

2
3
√

35
u2(λ) +

√
2√
35
u3(λ) +

7 − 2
√

6
2
√

70
u4(λ)

+
7 + 2

√
6

2
√

70
u5(λ).

Using (3.79), we obtain

〈T (x), T (y)〉ijkl =
1
4π

5∑
m=1

∫
R̂3

ei(p,y−x)Fm(p) dΩ dΦm(λ),

where

F1(p) =
2√
5
M2
ijkl +

√
2√
7
M4
ijkl(p) −

4
√

2√
35
M5
ijkl(p),

F2(p) =
4

3
√

5
M2
ijkl −

4
√

2
3
√

7
M4
ijkl(p) +

2
√

2√
35
M5
ijkl(p),

F3(p) =
2
3
M1
ijkl +

1
3
√

5
M2
ijkl −

2
3
√

7
M3
ijkl(p) +

√
2

3
√

7
M4
ijkl(p)

+
√

2√
35
M5
ijkl(p),

F4(p) =
5 + 2

√
6

12
M1
ijkl +

7 − 2
√

6
12
√

5
M2
ijkl −

2
√

2 +
√

3
6
√

2
M3
ijkl(p)

+
7
√

3 − 6
√

2
6
√

42
M4
ijkl(p) +

7 − 2
√

6
2
√

70
M5
ijkl(p),
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F5(p) =
5 − 2

√
6

12
M1
ijkl +

7 + 2
√

6
12
√

5
M2
ijkl −

2
√

2 −
√

3
6
√

2
M3
ijkl(p)

+
7
√

3 + 6
√

2
6
√

42
M4
ijkl(p)

7 + 2
√

6
2
√

70
M5
ijkl(p).

We see that the random field T (x) is a sum of five uncorrelated random fields
corresponding to the five terms of the above sum. We show how to simulate the
random field that corresponds to the first term of this sum, the remaining fields
are simulated similarly. Denote this term by U(x). The two-point correlation
tensor of the above term is

〈U(x), U(y)〉ijkl =
1
4π

∫
R̂3

ei(p,y−x)

(
2√
5
M2
ijkl +

√
2√
7
M4
ijkl(p)

− 4
√

2√
35
M5
ijkl(p)

)
dΩ dΦ1(λ)

=
1

2
√
π

∫
R̂3

ei(p,y−x)

(
2√
5

1√
5

2∑
n=−2

g
n[i,j]
2[1,1]g

n[k,l]
2[1,1]S

0
0(θp, ϕp)

+
√

2√
7

2∑
n,p=−2

4∑
q=−4

g
q[n,p]
2[2,2] g

n[i,j]
2[1,1]g

p[k,l]
2[1,1]

1
3
Sq4(θp, ϕp)

− 4
√

2√
35

2∑
n,p=−2

4∑
q=−4

g
q[n,p]
4[2,2] g

n[i,j]
2[1,1]g

p[k,l]
2[1,1]

1
3
Sq4(θp, ϕp)

)
dΩ dΦ1(λ).

As usual, we calculate the inner integral using the Rayleigh expansion (2.62) and
the Gaunt integral (2.36). We obtain

〈U(x), U(y)〉ijkl = 4π
∞∑

�,�′=0

i�−�
′√

(2�+ 1)(2�′ + 1)
�∑

m=−�

�′∑
m′=−�′

(4.1)

∫ ∞

0

(
2
5
g
0[m,m′]
0[�,�′] g

0[0,0]
0[�,�′]

2∑
n=−2

g
n[i,j]
2[1,1]g

n[k,l]
2[1,1]

+
√

2
9
√

7
g
0[0,0]
4[�,�′]

2∑
n,p=−2

4∑
q=−4

g
q[n,p]
2[2,2] g

n[i,j]
2[1,1]g

p[k,l]
2[1,1]g

q[m,m′]
4[�,�′]

− 4
√

2
9
√

35
g
0[0,0]
4[�,�′]

2∑
n,p=−2

4∑
q=−4

g
q[n,p]
4[2,2] g

n[i,j]
2[1,1]g

p[k,l]
2[1,1]g

q[m,m′]
4[�,�′]

)
× j�(λ‖y‖)j�′(λ‖x‖) dΦ1(λ)Sm� (θy, ϕy)Sm

′
�′ (θx, ϕx).

Note that g0[0,0]
0[�,�′] = 0 if � �= �′. Similarly, g0[0,0]

4[�,�′] = 0 if |�− �′| �= 4. Then i�−�
′
= 1

in all the non-zero terms. Using Karhunen’s theorem, we obtain
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U(r, θ, ϕ) = 2
√
π

∞∑
�=0

√
2�+ 1

�∑
m=−�

∫ ∞

0

j�(λr) dZmij�(λ)Sm� (θ, ϕ),

where Zmij� are centred real-valued random measures on [0,∞) with control
measure Φ1 and cross-correlation

E[Zmij�(A)Zm
′

kl�′(B)] = bmm
′

ijkl��′Φ1(A ∩B),

where bmm
′

ijkl��′ is the expression in round brackets in (4.1).
To simulate this field, we follow Katafygiotis, Zerva & Malyarenko (1999).

Assume that there exists an isotropic spectral density of the field, that is,

Φ1(A) = 4π
∫
A

λ2f(λ) dλ.

Choose an upper cutoff wavenumber Λ, above which the values of the spectral
density are insignificant for practical purposes. Select two positive integers L
and N and define Δλ = Λ/N . Choose a real number λ1 ∈ [0,Δλ]. Put λn =
λ1 + (n − 1)Δλ, 1 ≤ n ≤ N . The sample paths are simulated by the following
formula

Ũij(r, θ, ϕ) = 8π
√
πΔλ

L∑
�=0

√
2�+ 1

�∑
m=−�

N∑
n=1

j�(λnr)
√
f(λn)Zmij�n,

where Zmij�n are centred random variables with cross-correlation

E[Zmij�nZ
m′
kl�′n′ ] = δnn′bmm

′
ijkl��′ .

In other words, we truncate the infinite sum and the region of integration, and
use the rectangular rule of numerical integration. For the case of the stationary
random process, this approach goes back to Rice (1944).

4.2 Ergodic TRFs

Let N and d be two positive integers. An (N, d)-field is a map X : Rn → Rd

such that for any t ∈ Rn X(t) is a d-dimensional random vector. The field X is
called strictly homogeneous if, for any positive integer n, and for any points t,
t1, . . . , tn the nd-dimensional random vectors

(X(t1 + t), . . . ,X(tn + t))�

and
(X(t1), . . . ,X(tn))�

have the same distribution. Let Ω be the set of all Rd-valued functions on RN ,
let F be the smallest σ-field containing sets of the form

{f : RN → Rd : f(ti) ∈ Bi, 1 ≤ i ≤ n },

where n is a positive integer, ti ∈ RN , and the Bi are the intervals of the form
(a1, b1] × · · · × (ad, bd]. Let P be the probability measure uniquely defined by
Kolmogorov’s theorem by the finite-dimensional distributions of the field X.



228 Tensor Random Fields in Continuum Theories

Let i ∈ [1, N ] be an integer, and let τ ∈ R. The shift transformation T iτ : Ω →Ω

is defined by

T iτf(t1, . . . , tj , . . . , tN ) = f(t1, . . . , tj + τ, . . . , tN ).

For a strictly homogeneous random field, the shift transformation is measure-
preserving, that is, P(T iτS) = P(S). A set S ∈ F is called invariant if for every i
and τ the sets S and T iτS differ, at most, by a set of P-measure 0. It is easy to
see that the invariant sets form a σ-field and that all sets of probability 0 or 1
belong to this σ-field. The field X is ergodic if any invariant set has probability
either 0 or 1.

Let σ(T ) be the centred ball in RN of radius T > 0, and let BN be the Lebesgue
measure of σ(1). The ergodic theorem, see Adler (2010, Theorem 6.5.1), says that
under mild additional conditions we have

lim
T→∞

1
BNTN

∫
σ(T )

X(t)dt = E[X(0)] (4.2)

P-almost surely. In engineering literature, Equation (4.2) is the definition of
ergodicity.

By Adler (2010, Theorem 6.5.3), a Gaussian (N, d)-field with zero mean and
almost surely continuous sample functions is ergodic if and only if its spectral
distribution function is continuous.

On the other hand, the spectral formulation of Slutsky’s theorem, see Yaglom
(1987, p. 231), says that a (1, 1)-field is ergodic in the sense of (4.2) if and only
if its spectral measure is continuous at the point 0. The same is also true for
N ≥ 1 and d ≥ 1.

All random fields considered by us are homogeneous. Its spectral distribution
function has the form f(p) dμ(p), where μ is a finite measure on the wavenumber
domain R̂N , and f(p) takes values in the cone of Hermitian non-negatively-
definite linear operators in Cd. If, in addition, the field is (G,U)-isotropic, then
the field is completely determined by the values of the spectral distribution
function on the orbit space R̂N\G. Specifically, we have

R̂N = ∪M−1
m=0 π

−1((R̂N\G)m),

where π maps each point p ∈ R̂N to its orbit, and (R̂N\G)m is the set of all
orbits of the mth type. Then π−1((R̂N\G)m) = (R̂N\G)m ×Om, the restriction
of the measure μ to π−1((R̂N\G)m) is the product of an arbitrary finite measure
νm on (R̂N\G)m and the G-invariant probabilistic measure on the orbit Om, and
f(gp) = (U ⊗ U)(g)f(p), p ∈ R̂N\G.

It is easy to see that spectral distribution function f(p) dμ(p) on R̂N is contin-
uous (resp. continuous in 0) if and only if its restriction to R̂N\G is continuous
(resp. continuous in 0). In other words, a homogeneous and (G,U)-isotropic
Gaussian random field with almost surely continuous sample trajectories is
ergodic (resp. ergodic in the sense of (4.2)) if and only if its isotropic spectral
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measure (resp. the restriction of the spectral distribution function to the orbit
space) is continuous (resp. continuous in 0).

4.3 Rank 1 TRF

4.3.1 Restriction Imposed by a Divergence-Free Property

Take v to be a homogeneous and isotropic vector random field. If v is assumed
to satisfy the zero-divergence property

div v = 0

it may be interpreted as the continuum velocity field, and the classical treatment
of turbulent incompressible flows (Batchelor 1982) may be applied. Thus, in index
notation,

0 = 〈vi,i (0) vj (z)〉 = Rij ,i (z) ≡
∂Rij (z)
∂zi

.

Now, recalling the representation (3.46) (i.e.

Rij (z) = A (z) zizj +B (z) δij with z ≡ ‖z‖ ,

one finds

Rij ,i (z) = 0 ⇒ 4A+ zA′ +
1
z
B′ = 0, (4.3)

where a prime denotes the derivative with respect to z. Next, introduce two
particular correlation functions

longitudinal: f (z)=
〈vp (0) vp (z)〉〈

v2
p

〉 ,

lateral: g (z)=
〈vn (0) vn (z)〉

〈v2
n〉

,

whereby p (or n) denotes parallel (resp., normal) velocity components, while the
summation convention does not apply to the terms in the denominator.

By ergodicity in the mean, we have that the square (v2) of any velocity
component v equals

v2 =
〈
v2
p

〉
=
〈
v2
n

〉
=

1
3
vivi,

so that
v2f (z)= 〈vp (0) vp (z)〉 = A (z) z2 +B (z) ,
v2g (z) = 〈vn (0) vn (z)〉 = B (z) .

(4.4)

It follows from (4.3) that f and g are related through

g = f +
1
2
zf ′.

Note that these two functions are accessible through experiments or computer
simulations of turbulent flows.
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For a vector RF u in 2D, the representation Rij (z) = A (z) zizj + B (z) δij
holds again, but

Rij ,i (z) = 0 ⇒ 3A+ zA′ +
1
z
B′ = 0. (4.5)

Since the relations (4.4) hold, (4.5) yields

g = f + zf ′.

Next, consider the steady-state heat conduction. Since the heat flux satisfies

div q = 0,

there is a direct analogy to the velocity field and the same restrictions follow.
One more way to prove (3.46) is as follows. The velocity field vi of an incom-

pressible fluid satisfies vi,i = 0. Therefore, there exists a potential ϕ such that
ϕ,ii = 0. The potential field ϕ(z) must be homogeneous and isotropic by the
same reasons as random fields in Section 3.1. Let

Rϕ(‖z‖) = 〈ϕ(0)ϕ(z)〉

be the two-point correlation function of the random field ϕ(z). Recall that the
two-point correlation tensor Rij(z) = 〈v(0)v(z)〉 of the velocity field is given by

Rij(z) = −∂
2Rϕ(‖z‖)
∂zj∂zi

.

Now we denote R′ = dR/d‖z‖ and derive

Rij(z) = − ∂

∂zj

(
R′
ϕ

zi
‖z‖

)
= −

(
R′′
ϕ

zi
‖z‖

zj
‖z‖ +R′

ϕ

zi,j‖z‖ − zizj/‖z‖
‖z‖2

)
=
(
R′
ϕ

1
‖z‖ −R′′

ϕ

)
zizj
‖z‖2

−R′
ϕ

δij
‖z‖

= A(‖z‖)zizj +B(‖z‖)δij ,
where

A(‖z‖) =
1

‖z‖3
R′
ϕ − 1

‖z‖2
R′′
ϕ, B(‖z‖) = − 1

‖z‖R
′
ϕ.

The above is the paradigm for treatments of other TRFs in more complex
situations, which can be summarised as:

● find the explicit form of the correlation function;
● impose a restriction dictated by the relevant physics;
● support the results by experiments and/or computational studies.

4.3.2 Restriction Imposed by a Curl-Free Property

Start with a homogeneous and isotropic vector random field v and assume it to
satisfy the zero-curl property:

0 = curlv = eijkvk,j ei.
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Hence

0 = 〈eijkvk,j (0) vp (z)〉 = eijkRkp,j (z) .

Given the representation (3.46), we identify two cases

Case 1. (i, p) = (1, 1) : R31,2 (z) = A′ (z)
1
z
z1z2z3 = R21,3 (z)

Case 2. (i, p) = (1, 2) :
R32,2 (z) = A′ (z)

1
z
z2
2z3 +A (z) z2

R22,3 (z) = A′ (z)
1
z
z2
2z3 +B′ (z)

1
z
z3

Case 1 is satisfied identically, while Case 2 implies the restriction

zA = B′ (z).

4.3.3 Velocity and Stress Field Correlations

in Fluid Mechanics

Returning back to v being the incompressible velocity field, if v′ denotes the
velocity fluctuation (i.e. rank 1 TRF), the Reynolds stress

Rkl := −ρ 〈v′kv′l〉

defines a symmetric rank 2 TRF. Next, consider the spatial average of the
turbulence energy (in Cauchy media) defined from Rkl as

ψ =
1
2
Rkk = −1

2
ρ 〈v′kv′k〉 .

This defines a scalar RF. Its correlation follows from (3.63):

〈ψ(0)ψ(z)〉 =
1
4
〈Rii(0)Rkk(z)〉 =

1
4

5∑
m=1

Sm(z)J(m)
iikk(z),

implying an explicit link between the correlation function of energy and the five
Sm(r) functions of the Reynolds stress:

〈ψ(0)ψ(z)〉 =
9
4
S1(z) +

3
2
S2(z) +

3
2
S3(z) + S4(z) +

1
4
S5(z).

4.4 TRFs in Classical Continuum Mechanics

4.4.1 Interpretations of Specific Correlations

Rank 2 TRFs play a very important rôle in continuum physics. Given that T has
diagonal and off-diagonal components, there are five special cases of Bklij which
shed light on the physical meaning of Kαs:
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1. 〈Tij (0)Tkl (z)〉 |i=j=k=l; i.e. auto-correlations of diagonal terms:

〈T11 (0)T11 (z)〉 = K0 + 2K1 + 2z2
1K2 + 4z2

1K3 + z4
1K4

and then 〈T22 (0)T22 (z)〉 and 〈T33 (0)T33 (z)〉 by cyclic permutations 1 →
2 → 3.

2. 〈Tij (0)Tkl (z)〉 |i=j �=k=l; i.e. cross-correlations of diagonal terms:

〈T11 (0)T22 (z)〉 = K0 +
(
z2
2 + z2

1

)
K2 + z2

2z
2
1K4

and then 〈T22 (0)T33 (z)〉 and 〈T33 (0)T11 (z)〉 by cyclic permutations 1 →
2 → 3.

3. 〈Tij (0)Tkl (z)〉 |i=k �=j=l; i.e. auto-correlations of off-diagonal terms:

〈T12 (0)T12 (z)〉 = K1 +
(
z2
1 + z2

2

)
K3 + z2

1z
2
2K4

and then 〈T23 (0)T23 (z)〉 and 〈T31 (0)T31 (z)〉 by cyclic permutations 1 →
2 → 3.

4. 〈Tij (0)Tkl (z)〉 |j �=i=k �=l �=j ; that is cross-correlations of off-diagonal terms:
〈T12 (0)T13 (z)〉 = z2z3K3 + z2

1z2z3K4, then 〈T13 (0)T32 (z)〉 and 〈T32 (0)
T12 (z)〉 by cyclic permutations 1 → 2 → 3.

5. 〈Tij (0)Tkl (z)〉 |i=j=k �=l �=j ; i.e. cross-correlations of diagonal with off-
diagonal terms: such as 〈T11 (0)T12 (z)〉 = z1z2 (K2 + 2K3) + z1z

3
2K4 and

〈T12 (0)T13 (z)〉 = z2z3K2 + z2
1z2z3K4 and the other ones by cyclic permuta-

tions 1 → 2 → 3.

In principle, we can determine these five correlations for a specific physical
situation. For example, when T is the anti-plane elasticity tensor for a given
resolution (or mesoscale), we can use micromechanics or experiments and then
determine the best fits of Kα (α = 1, . . . , 5) coefficients.

One may determine Cklij (r) through experimental measurements or by com-
putational mechanics/physics on diverse material microstructures, in both cases
following a strategy for fourth-rank TRF in 2D or 3D (Sena, Ostoja-Starzewski
& Costa 2013).

Special case: the TRF is locally isotropic Tik (z) = T (z)δik with (neces-
sarily) T (z) > 0, so that we simply have a scalar random field. Then, the
auto-correlation B11

11 of T is a single scalar function C(z). With the variance
Var(T ) = 〈T (0)T (z)〉, the correlation coefficient defined by

ρ(z) :=
C(z)

Var(T )
is constrained by a standard condition of scalar RFs −1/d ≤ ρ(z) ≤ 1, if the
model is set in Rd. Basically, this is the correlation function of the conductivity
(or diffusion) in conventional stochastic partial differential equations (SPDE) of
elliptic type, conventionally set up on scalar random fields.

4.4.2 Anti-Plane Mechanics

This is a generalisation of the anti-plane elasticity of Subsection 1.3.2; recall
u3(x) �= 0 and u1(x) = u2(x) = 0 for ∀x. Assuming quasi-statics without body
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forces, the static equilibrium condition implies a direct analogy with the velocity
field in incompressible fluid flow, so the same conclusions apply.

The correlation tensor of the strain field εi is

Eji (z) := 〈εi(z1)εj(z1 + z)〉 ,
whereas the correlation function of the displacement u ≡ u3 is

U(z) := 〈u(z1)u(z1 + z)〉 .
On account of εi = u,i, we find

∂E1
1(z)
∂z2

=
∂E2

1(z)
∂z1

,
∂E2

2(z)
∂z1

=
∂E2

1(z)
∂z2

.

Assuming Eji (z) to have the representation (3.46), leads to this restriction

zA = B′.

The above results have not involved Hooke’s law, so that the restrictions
may also apply to other constitutive behaviours providing they involve small
gradients/strains.

4.4.3 3D Continuum Theories

This section directly follows Lomakin (1964) and Shermergor (1971).

Three useful facts

(i) Decomposition of a second-rank tensor field
With reference to Kröner (1958), any second-rank TRF can be decomposed

into potential (T1) and birotational (T2) parts:

T = T1 + T2 curlT1 = 0 div T2 = 0,

where T1 is described by the vector potential and T2 the tensor potential:

T = sym (∇ϕ) T2= curlΦ divΦ = 0.
or Tki = sym (∇ϕ) = ϕ(k,i) curl curlTij = einkejmlΦkl,nm .

(ii) Strain field as a potential field
With reference to Equation (1.34), considering the well-known definition of

small strains εij = u(i,j), we see that εij is a potential tensor field, with ui being
its potential.
(iii) Stress field as a birotational field

With reference to Equation (1.18), the balance of linear momentum in the
absence of any body forces σij ,j = 0 indicates that σij is birotational.

4.4.4 Correlation of Stress TRF

For the 3D elasticity, the Hooke law reads:

σij = Cijklεkl, i, j, k, l = 1, 2, 3.
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Now, if σij is taken as statistically homogeneous, the correlation function of its
fluctuations is

Sklij (z) :=
〈
σ′
ij(z1)σ′

kl(z1 + z)
〉
, i, j, k, l = 1, 2, 3,

which, on account of the static equilibrium (a special case of Equation (1.18)),
leads to:

Sklij ,j (z) = 0. (4.6)

Assuming σij to be a statistically isotropic TRF, its representation is (3.64),
so that we find

A1ziδkl +A2(zlδik + zkδil) +A3zizkzl = 0,

where
A1 = S′

13 + 2(S13 + S44 − S12 − S66)/z
A2 = S′

44 + (3S44 + S13 − S12 − 3S66)/z
A3 = S′

33 − S′
13 − 2S′

44 + 2(2S11 + S33 − 3S13 − 6S44)/z
and

Sklij =S12J
1
ijkl + S66J

2
ijkl + (S13 − S12)J3ijkl + (S44 − S66)J4ijkl

+ (S11 + S33 − 2S13 − 4S44)J5ijkl
(4.7)

where the prime denotes d/dz.
Assuming, without loss of generality, the coordinate systems attached to loca-

tions z1 and z1 +z to be related by a shift along a unit vector n = (n1, 0, 0), we
shall consider the following components:

K1 = S11
11 K2 = S22

22 K3 = S22
11

K4 = S33
22 K5 = S12

12 K6 = S23
23 .

From (4.6) we find

K1 = a1 + 2a2 + 2x2(2a3 + a4) + x4a5

K2 = a1 + 2a2 K3 = a1 + a4x
2 K4 = a1

K5 = a2 + a3x
2 K6 = a1.

Note that this relation is satisfied:

K6 = (K2 −K4) /2.

Solving the above system of equations for the ais and substituting the results
back into (4.7), we find

Sklij (z) =K4 (z) J1ijkl +K6 (z) J2ijkl
+ [K5 (z) −K6 (z)] J4ijkl + [K3 (z) −K4 (z)] J3ijkl
+ [K1 (z) +K2 (z) − 2K3 (z) − 4K5 (z)] J5ijkl.

(4.8)

Now, the stress field σij is purely birotational, meaning that it has no potential
component. Thus, on account of (4.6), we arrive at a system of three first-order
differential equations for the Kis

8K1 = (Z + 2)(Z + 4)K2

4K5 = (Z + 2)K2 − 2K3

8K4 = 8(Z + 1)K3 − Z(Z + 2)K2

Z ≡ z
d

dz
.
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This implies that, in an application/simulation of such a stress field, K2 and K3

should be chosen first.

4.4.5 Correlation of Strain TRF

An analogous strategy can be applied to the TRF of strain εij . Thus, a correlation
function of a second-rank TRF of strain

Eklij (z1,z2) := 〈εij(z1)εkl(z2)〉.

Next, a correlation tensor of the displacement field ui is

U ji (z1,z2) := 〈ui(z1)uj(z2)〉.

Assuming statistical homogeneity, we have U ji (z), and on account of (1.34) while
using an equivalent notation Uij(z) ≡ U ji (z), we obtain

Eklij = −∇(iUi)(k,l). (4.9)

Assuming the representation (3.63) for Eklij and (3.46) for U ji , the equation (4.9)
leads to

z2Eklij = − U2J
1
ijkl −

1
2
J2ijkl(U2 + zU ′

1) + (2U2 − zU ′
2)J

3
ijkl

+
1
4
(6U2 − 3zU ′

2 + zU ′
1z

2U ′′
1 )J4ijkl − (8U2 − 5zU ′

2 + z2U ′′
2 )J5ijkl.

(4.10)

On a separate track, again without loss of generality, taking the vector z to
be aligned with n = (n1, 0, 0), we consider the following components:

M1 = E11
11 = E11 M2 = E22

22 = E33 M3 = E22
11 = E13

M4 = E33
22 = E12 M5 = E12

12 = E44 M6 = E23
23 = E66,

This leads to

Eklij (z) =M4 (z) J1ijkl +
1
4
M6 (z) J2ijkl

+
1
4

[M5 (z) −M6 (z)] J4ijkl + [M3 (z) −M4 (z)] J3ijkl (4.11)

+ [M1 (z) +M2 (z) − 2M3 (z) −M5 (z)] J5ijkl.

Note that we haveM6 = 2(M2−M4). Comparing (4.10) with (4.11), we eliminate
the auxiliary functions U1 and U2 to obtain the system of equations

z2M12 = −U2

z2M6 = −2(U2 + zU
′
1)

z2(M3 −M4) = −2U2 − zU
′
2

z2(M5 −M6) = 6U2 − 3zU
′
2 + zU

′
1 − z2U

′′
1

z2(M1 +M2 − 2M3 −M5) = −8U2 − 5zU
′
2 + z2U

′′
2 .
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This results in a system of three differential equations

M2 = (Z + 1)M1 + Z(Z + 1)M4

M5 = (Z + 2)M1 + (Z − 2)M4

M3 = (Z + 1)M4

Z ≡ z
d

dz
.

This implies that, in an application/simulation of such a stress field, K2 and K3

should be chosen first.

4.4.6 Correlations of Rotation and Curvature-Torsion Fields

Once the correlation tensors of stress and strain fields are known, one can also
assess the TRF of rotations of grains. First, define the rotation vector

ω : =
1
2

curlu or ωi :=
1
2
eijkuk,j

and then introduce its correlation tensor

Ωji (z1,z2) := 〈ωi(z1)ωj(z2)〉.

It follows that

Ω =
1
4

curlU and divΩ = 0.

The above, together with the representation of a statistically homogeneous
isotropic RF of Ω (Ωji = Ωij)

Ωji (z) = Ω1
1δij +

(
Ω3

3 −Ω1
1

)
ninj

implies

z
(
Ω3

3

)′
δij + 2

(
Ω3

3 −Ω1
1

)
= 0 and Ω1

1 =
1
2z

d

dz

(
z2Ω3

3

)
.

Next, define the curvature tensor

κ := ∇ω or κij := ωi,j

and then introduce its correlation tensor K:

Kklij (z1,z2) = 〈κij(z1)κkl(z2)〉.

It follows that

Kklij ≡ Kijkl = −Ωik,jl≡ −θikjl.

In the above we have defined the tensor θikjl; it is asymmetric with respect to
interchange of the pair of indices (ik) ↔ (jl), but symmetric with respect to an
interchange within each pair:

θikjl = θkijl = θiklj �= θjlik.

The above implies

z
(
Ω3

3

)′
δij + 2

(
Ω3

3 −Ω1
1

)
= 0 and Ω1

1 =
1
2z

d

dz

(
z2Ω3

3

)
.
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Relations of that type have relevance in a micropolar model of a random
heterogeneous material.

As in the anti-plane mechanics, the above results have not involved Hooke’s
law, so that the restrictions may also apply to other constitutive behaviours
providing they involve small gradients/strains.

4.5 TRFs in Plane

4.5.1 Group-Theoretical Considerations

Consider the (O(2), ρ+ ⊕ ρ2)-problem. That is, we consider a random field
T (x) : R2 → S2(R2) that is homogeneous and (O(2), ρ+ ⊕ ρ2)-isotropic. Exactly
as in Section 3.6, we prove that 〈T (x)〉 = 0 and

〈T (x), T (y)〉 =
1
2π

∫ ∞

0

∫ 2π

0

ei(p,y−x)f(λ, ψ) dψ dΦ(λ), (4.12)

where (λ, ψ) are the polar coordinates in R̂2, p = λ(cosψ, sinψ)�, and

f(p) ∈ S2(S2(R2)), f(gp) = S2(ρ+ ⊕ ρ2)(g)f(p).

Consider the value of f(0, 0) first. The stationary subgroup of the point (0, 0)
is O(2). It follows that the value of f(0, 0) belongs to the convex compact set
C1, the intersection of the set of all non-negative-definite symmetric operators in
S2(R2) with unit trace and the isotypic subspace of the representation S2(ρ+⊕ρ2)
that corresponds to the trivial representation of O(2). To describe the set C1, we
introduce coordinates.

The basis of the space S2(R2) that respects the representation ρ = ρ+ ⊕ ρ2

is given by the Clebsch–Gordan matrices (2.25). The representation ρ ⊗ ρ is as
follows:

ρ⊗ ρ = (ρ+ ⊕ ρ2) ⊗ (ρ+ ⊕ ρ2) = ρ+ ⊕ 2ρ2 ⊕ (ρ+ ⊕ ρ− ⊕ ρ4),

and its symmetric part is

S2(ρ) = 2ρ+ ⊕ ρ2 ⊕ ρ4.

The first copy of ρ+ acts in the space generated by the tensor

T+,1 = c++[1,1] ⊗ c++[1,1],

while the space of the second copy is generated by the tensor

T+,2 =
∑

i,j∈{−1,1}
c
+[i,j]
+[2,2]c

i
2[1,1] ⊗ cj2[1,1],

The above two rank 4 tensors are the elements of the linear space S2(S2(R2)).
In order to write down the entries of similar tensors on a two-dimensional paper,
consider the following map acting from S2(S2(R2)) to S2(R3):
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τTijkl =

⎛⎝ T−1−1−1−1

√
2T−1−1−11 T−1−111√

2T−1−1−11 2T−11−11

√
2T−1111

T−1−111

√
2T−1111 T1111

⎞⎠ . (4.13)

It is easy to check that the map τ is linear, one-to-one and orthogonal. From
now on, we are working in the space S2(R3) instead of S2(S2(R2)), using the
isomorphism (4.13).

We obtain

τT+,1 =
1
2

⎛⎝1 0 1
0 0 0
1 0 1

⎞⎠ , τT+,2 =
1

2
√

2

⎛⎝ 1 0 −1
0 2 0
−1 0 1

⎞⎠ .

To simplify notation, we omit the symbol τ in all subsequent equations.
The element f+,1(0)T+,1 + f+,2(0)T+,2 of the linear space generated by
T+,1 and T+,2 is a non-negative-definite matrix with unit trace if and only if
f+,1(0) = 1

2 and f+,2(0) = 0. We have C1 = {T+,1}.
Consider the matrix f(λ, 0) with λ > 0. The irreducible component ρ2 of the

representation S2(ρ) acts in the linear space generated by the tensors

T 2,m = − m√
2
(c++[1,1] ⊗ cm2[1,1] + cm2[1,1] ⊗ c++[1,1]), m ∈ {−1, 1}.

The restriction of the representation ρ2 to the subgroup O(1) contains the trivial
irreducible component acting is the linear space generated by

T 2,1 =
1√
2

⎛⎝1 0 0
0 0 0
0 0 −1

⎞⎠ .

Similarly, the irreducible component ρ4 of the representation S2(ρ) acts in the
linear space generated by the tensors

T 4,m =
∑

i,j∈{−1,1}
c
m[i,j]
4[2,2] c

i
2[1,1] ⊗ cj2[1,1], m ∈ {−1, 1},

The restriction of the representation ρ4 to the subgroup O(1) contains the trivial
irreducible component acting is the linear space generated by

T 4,1 =
1

2
√

2

⎛⎝ 1 0 −1
0 −2 0
−1 0 1

⎞⎠ .

Consider the element

f(λ, 0) = f+,1(λ)T+,1 + f+,2(λ)T+,2 + f2,1(λ)T 2,1 + f4,1(λ)T 4,1 (4.14)

of the linear space generated by the four tensors T+,1, T+,2, T 2,1 and T 4,1. The
matrix f(λ, 0) has the form

f(λ, 0) =

⎛⎝u2(λ) 0 u4(λ)
0 u1(λ) 0

u4(λ) 0 u3(λ)

⎞⎠ ,
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where

u1(λ) =
1√
2
(f+,2(λ) − f4,1(λ)),

u2(λ) =
1
2
f+,1(λ) +

1
2
√

2
f+,2(λ) +

1√
2
f2,1(λ) +

1
2
√

2
f4,1(λ),

u3(λ) =
1
2
f+,1(λ) +

1
2
√

2
f+,2(λ) − 1√

2
f2,1(λ) +

1
2
√

2
f4,1(λ),

u4(λ) =
1
2
f+,1(λ) − 1

2
√

2
f+,2(λ) − 1

2
√

2
f4,1(λ).

(4.15)

It is obvious that the matrix f(λ, 0) is non-negative-definite with unit trace if
and only if ui(λ) ≥ 0, 1 ≤ i ≤ 3, u1(λ) + u2(λ) + u3(λ) = 1 and |u4(λ)| ≤√
u2(λ)u3(λ).
Define

v1(λ) =
u2(λ)

u2(λ) + u3(λ)
, v2(λ) =

u4(λ)
u2(λ) + u3(λ)

. (4.16)

We see that the set C0 is the cone with the vertex

D1 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠ ,

which corresponds to the case of u1(λ) = 1 and the base consisting of the
symmetric matrices

D(λ) =

⎛⎝v1(λ) 0 v2(λ)
0 0 0

v2(λ) 0 1 − v1(λ)

⎞⎠
lying in the closed disk (

v1(λ) − 1
2

)2

+ v2
2(λ) ≤ 1

4
,

which corresponds to the case of u1(λ) = 0. The matrix f(λ, 0) takes the form

f(λ, 0) = u1(λ)D1 + (u2(λ) + u3(λ))D(λ).

The coefficients of the expansion (4.14) are expressed in term of the functions
ui(λ) as follows:

f+,1(λ) =
1
2
u2(λ) +

1
2
u3(λ) + u4(λ),

f+,2(λ) =
1√
2
u1(λ) +

1
2
√

2
u2(λ) +

1
2
√

2
u3(λ) − 1√

2
u4(λ),

f2,1(λ) =
1√
2
(u2(λ) − u3(λ)),

f4,1(λ) = − 1√
2
u1(λ) +

1
2
√

2
u2(λ) +

1
2
√

2
u3(λ) − 1√

2
u4(λ).

(4.17)
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Introduce the M-functions

M+,n
ijkl (p) = T+,n

ijkl , n = 1, 2,

Mn
ijkl(p) =

∑
m∈{−1,1}

Tn,mijkl ρ
n
m1(p), n = 2, 4.

Note that ρn−11(p) = sin(nψ) and ρn11(p) = cos(nψ). Exactly as in Malyarenko
& Ostoja-Starzewski (2016b), we prove that

fijkl(p) =M+,1
ijkl(p)f+,1(λ) +M+,2

ijkl(p)f+,2(λ)

+M2
ijkl(p)f2,1(λ) +M4

ijkl(p)f4,1(λ).
(4.18)

Using (4.16) and (4.17), we obtain

fijkl(p) =
[

1√
2
(M+,2

ijkl(p) −M4
ijkl(p))

]
u1(λ)

+
[(

1
2

+ v2(λ)
)
M+,1
ijkl(p) +

(
1

2
√

2
− 1√

2
v2(λ)

)
M+,2
ijkl(p)

+
(
− 1√

2
+
√

2v1(λ)
)
M2
ijkl(p)

+
(

1
2
√

2
− 1√

2
v2(λ)

)
M4
ijkl(p)

]
(u2(λ) + u3(λ)).

Apply the Jacobi–Anger expansion (2.61), substitute the result in Equa-
tion (4.12), and integrate with respect to dψ. We obtain

〈T (x), T (y)〉ijkl =
∫ ∞

0

[
1√
2
(J0(λρ)M

+,2
ijkl(z) − J4(λρ)M4

ijkl(z))
]

dΦ1(λ)

+
∫ ∞

0

[(
1
2

+ v2(λ)
)
J0(λρ)M

+,1
ijkl(z)

+
(

1
2
√

2
− 1√

2
v2(λ)

)
J0(λρ)M

+,2
ijkl(z)

+
(

1√
2
−
√

2v1(λ)
)
J2(λρ)M2

ijkl(z)

+
(

1
2
√

2
− 1√

2
v2(λ)

)
J4(λρ)M4

ijkl(z)
]

dΦ2(λ),

where z = y − x, ρ = ‖z‖, dΦ1(λ) = u1(λ) dΦ(λ) and dΦ2(λ) = (u2(λ) +
u3(λ)) dΦ(λ).

The M-functions are expressed in terms of L-functions as follows:

M+,1
ijkl(z) =

1
2
L1
ijkl(z),

M+,2
ijkl(z) =

1
2
√

2
(−L1

ijkl(z) + L2
ijkl(z)),

M2
ijkl(z) =

1√
2
(−L1

ijkl(z) + L4
ijkl(z)),

M4
ijkl(z) =

1
2
√

2
(3L1

ijkl(z) − L2
ijkl(z)) +

√
2(−L4

ijkl(z) + 2L5
ijkl(z)). (4.19)
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Table 4.1 The functions Nmn(λ, ρ)

m n Nmn(λ, ρ)

1 1 1
4
(−J0(λρ) − 3J4(λρ))

1 2 1
4
(J0(λρ) − J4(λρ))

1 4 −J4(λρ)

1 5 2J4(λρ)

2 1 1
8
[(2v2(λ) − 1)J0(λρ) + (8v1(λ) − 4)J2(λρ) + (−6v2(λ) + 3)J4(λρ)]

2 2 1
8
[(−2v2(λ) + 1)J0(λρ) + (2v2(λ) − 1)J4(λρ)]

2 4 1
2
[(−2v1(λ) + 1)J2(λρ) + (2v2(λ) − 1)J4(λρ)]

2 5 (2v2(λ) − 1)J4(λρ)

The two-point correlation tensor of the field takes the form

〈T (x), T (y)〉ijkl =
2∑

m=1

∫ ∞

0

∑
n=1,2,4,5

Nmn(λ, ρ)Lnijkl(ϕ) dΦm(λ), (4.20)

where (ρ, ϕ) are the polar coordinates of the point z and the functions Nmn(λ, ρ)
are given in Table 4.1.

Equation (4.20) may be written in the following form:

〈T (x), T (y)〉ijkl =
∑

n=1,2,4,5

hn(ρ)Lnijkl(ϕ), (4.21)

where

hn(ρ) =
2∑

m=1

∫ ∞

0

Nmn(λ, ρ) dΦm(λ).

In order to obtain the spectral expansion of the field T (x), we can proceed as
follows. Write down the Jacobi–Anger expansion twice: the first one for ei(p,y)

and the second one for e−i(p,x), substitute both expansions in (4.12) and integrate
with respect to dψ. The resulting equations become complicated.

To simplify calculations and simulations, we propose the following idea.
Inscribe a simplex C into the cone C0 in such a way that C1 ⊂ C and C has
the maximal possible volume. It is easy to see that the vertices of C are D1,
D2 = T+,1 and

D3 =
1
4

⎛⎝2 −
√

3 0 −1
0 0 0
−1 0 2 +

√
3

⎞⎠ , D4 =
1
4

⎛⎝2 +
√

3 0 −1
0 0 0
−1 0 2 −

√
3

⎞⎠ .

Assume that the matrix f(λ, 0) may only take values in C. Then it takes the
form

f(λ, 0) =
4∑

m=1

um(λ)Dm,

where um(λ) are the barycentric coordinates of the point f(λ, 0) in the simplex C.
Using this equation and (4.17), we obtain
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f+,1(λ) = u2(λ) +
1
4
u3(λ),

f+,2(λ) =
1√
2
u1(λ) +

3
4
√

2
u3(λ) +

3
4
√

2
u4(λ),

f2,1(λ) =
√

3
2
√

2
(−u3(λ) + u4(λ)),

f4,1(λ) = − 1√
2
u1(λ) +

3
4
√

2
u3(λ) +

3
4
√

2
u4(λ).

It follows from (4.18) that

fijkl(p) =
1√
2
[M+,2

ijkl(p) −M4
ijkl(p)]u1(λ) +M+,1

ijkl(p)u2(λ)

+
1

4
√

2
[
√

2M+,1
ijkl(p) + 3M+,2

ijkl(p) − 2
√

3M2
ijkl(p)

+ 3M4
ijkl(p)]u3(λ)

+
1

4
√

2
[3M+,2

ijkl(p) + 2
√

3M2
ijkl(p) + 3M4

ijkl(p)]u4(λ).

(4.22)

Using the Jacobi–Anger expansion and (4.12), we obtain

〈T (x), T (y)〉ijkl =
1√
2

∫ ∞

0

[J0(λρ)M
+,2
ijkl(z) − J2(λρ)M4

ijkl(z)] dΦ1(λ)

+
∫ ∞

0

J0(λρ)M
+,1
ijkl(z) dΦ2(λ)

+
1

4
√

2

∫ ∞

0

[J0(λρ)[
√

2M+,1
ijkl(z) + 3M+,2

ijkl(z)]

+ 2
√

3J2(λρ)M2
ijkl(z) + 3J4(λρ)M4

ijkl(z)] dΦ3(λ)

+
1

4
√

2

∫ ∞

0

[3J0(λρ)M
+,2
ijkl(z) − 2

√
3J2(λρ)M2

ijkl(z)

+ 3J4(λρ)M4
ijkl(z)] dΦ4(λ),

where dΦm(λ) = um(λ) dΦ(λ). Only the measure Φ2 can have an atom in 0,
because C1 = {D2}. It follows from (4.19) that

〈T (x), T (y)〉ijkl =
4∑

m=1

∫ ∞

0

∑
n=1,2,4,5

Ñmn(λ, ρ)Ln(ϕ) dΦm(λ), (4.23)

where the non-zero functions Ñmn(λ, ρ) are shown in Table 4.2.
To obtain the spectral expansion of the random field T (x) in this particular

case, we perform the following. Write down M-functions in the form

M+,n
ijkl (p) = T+,n

ijkl cos(0ψ), n = 1, 2,

Mn
ijkl(p) = Tn,−1

ijkl sin(nψ) + Tn,1ijkl cos(nψ) n = 2, 4.
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Table 4.2 The non-zero functions Ñmn(λ, ρ)

m n Ñmn(λ, ρ)

1 1 1
2
√

2
(−J0(λρ) − 3J2(λρ))

1 2 1
2
√

2
(J0(λρ) + J2(λρ))

1 4
√

2J2(λρ)

1 5 −2
√

2J2(λρ)

2 1 1
2
J0(λρ)

3 1 − 1
16

J0(λρ) −
√

6J2(λρ) + 9
2
√

2
J4(λρ)

3 2 3
16

J0(λρ) − 3
2
√

2
J4(λρ)

3 4
√

6J2(λρ) − 3
√

2J4(λρ))

3 5 6
√

2J4(λρ)

4 1 − 3
16

J0(λρ) +
√

3
4

J2(λρ) + 9
16

J4(λρ)

4 2 3
16

J0(λρ) − 3
16

J4(λρ)

4 4 −
√

3
4

J2(λρ) − 3
4
J4(λρ))

4 5 3
2
J4(λρ)

Equation 4.22 takes the form

fijkl(λ, ψ) =
1√
2
[T+,2
ijkl cos(0ψ) − T 4,−1

ijkl sin(4ψ) − T 4,1
ijkl cos(4ψ)]u1(λ)

+ T+,1
ijkl cos(0ψ)u2(λ)

+
1

4
√

2
[
√

2T+,1
ijkl cos(0ψ) + 3T+,2

ijkl cos(0ψ)

− 2
√

3T 2,−1
ijkl sin(2ψ)

− 2
√

3T 2,1
ijkl cos(2ψ) + 3T 4,−1

ijkl sin(4ψ) + 3T 4,1
ijkl cos(4ψ)]u3(λ)

+
1

4
√

2
[3T+,2

ijkl cos(0ψ) + 2
√

3T 2,−1
ijkl sin(2ψ)

+ 2
√

3T 2,1
ijkl cos(2ψ) + 3T 4,−1

ijkl sin(4ψ) + 3T 4,1
ijkl cos(4ψ)]u4(λ).

Write the Jacobi–Anger expansion for e−i(p,x) and ei(p,y) separately and
subsitute the result to the formula

〈T (x), T (y)〉ijkl =
1
2π

∫ ∞

0

∫ 2π

0

ei(p,y−x)fijkl(λ, ψ) dψ dΦ(λ),

calculate the inner integral and use Karhunen’s theorem. We obtain the following
result.

Denote by Δm
��′ , �, �

′, m ∈ Z, the matrices with the following entries:

Δ0
��′ = δ�−�′,0,

Δm
��′ =

1
2
(δ�−�′−m,0 + δ�−�′+m,0), m > 0,
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Δm
��′ =

1
4
(δ�′−�+m,0 − δ�′−�−m,0 + δ�−�′+m,0 − δ�−�′−m,0

+ 2δ�′+�+m,0 − 2δ�′+�−m,0), m < 0.

Let B��
′m

ijkl , �, �′ ∈ Z, 1 ≤ m ≤ 4 be the tensors

B��
′1

ijkl =
1√
2
[T+,2
ijklΔ

0
��′ − T 4,−1

ijkl Δ
−4
��′ − T

4,1
ijklΔ

4
��′ ],

B��
′2

ijkl = T+,1
ijklΔ

0
��′ ,

B��
′3

ijkl =
1

4
√

2
[
√

2T+,1
ijklΔ

0
��′ + 3T+,2

ijklΔ
0
��′ − 2

√
3T 2,−1

ijkl Δ
−2
��′

− 2
√

3T 2,1
ijklΔ

2
��′ + 3T 4,−1

ijkl Δ
−4
��′ + 3T 4,1

ijklΔ
4
��′ ]

B��
′4

ijkl = [3T+,2
ijklΔ

0
��′ + 2

√
3T 2,−1

ijkl Δ
−2
��′ + 2

√
3T 2,1

ijklΔ
2
��′ + 3T 4,−1

ijkl Δ
−4
��′

+ 3T 4,1
ijklΔ

4
��′ ].

Let Z�mij (λ) be the centred random measures on [0,∞) with

E[Z�mij (A)Z�
′m′
kl (B)] = δmm′B��

′m
ijkl Φm(A ∩B)

for all Borel sets A, B ⊆ [0,∞).

Theorem 37. Assume that the matrix f(λ, 0) may only take values in C. Then
the one-point correlation tensor of the homogeneous and isotropic random field
T (x) is

〈T (x)〉ij = Cδij , C ∈ R.

Its two-point correlation tensor has the form (4.23), where Φm are four finite
measures on [0,∞) and only Φ2 may have an atom in 0. The field has the form

Tij(ρ, ϕ) = Cδij +
∞∑
�=0

4∑
m=1

∫ ∞

0

J�(λρ) dZ�mij (λ) cos(�ϕ)

+
−1∑

�=−∞

4∑
m=1

∫ ∞

0

J−�(λρ) dZ�mij (λ) sin(�ϕ).

4.5.2 Applications

Interpretations of specific correlations

For reference, we write the representation above as

Tijkl(z) = H1δijδkl +H2 (δikδjl + δilδjk) +H4 (δijzkzl + δklzizj)

+H5zizjzkzl.

Given that T has diagonal and off-diagonal components, there are four special
cases of Tijkl which shed light on the physical meaning of Hns:
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1. auto-correlations of diagonal terms: T1111 = H1 + 2H2 + 2z2
1H4 + z4

1H5 and
T2222 = H1 + 2H2 + 2z2

2H4 + z4
2H5.

2. cross-correlation of diagonal terms: T1122 = H1 +
(
z2
1 + z2

2

)
H4 + z2

1z
2
2H5.

3. auto-correlation of an off-diagonal term: T1212 = H2 + z2
1x

2
2H5.

4. cross-correlation of a diagonal with an off-diagonal term:

〈T11(0)T12(z)〉 = T1112 = z1x2H4 + z3
1x2H5.

Just as in TRF of rank 1, we can determine these four correlations for a specific
physical situation. Without loss of generality (due to wide-sense isotropy), when
z ≡ (z1, z2) is chosen equal to (z, 0), we find

H1 = T2222 − 2T1212

H2 = T1212

H4 = z−2 (T1122 − T2222 − 2T1212)
H5 = z−4 (T1111 + T2222 − 2T1122) .

(4.24)

For example, when T is the anti-plane elasticity tensor for a given resolution (or
mesoscale) (Ostoja-Starzewski 2008), we can use micromechanics or experiments
and then determine the best fits of Hα (α = 1, 2, 4, 5) coefficients, providing the
positive-definiteness of T is imposed. However, when T represents the depen-
dent field quantity, then a restriction dictated by the field equation needs to be
imposed.

TRF with a local isotropic property

Take Tij = Tδij , where the axial component T is the scalar random field describ-
ing the randomness of such a medium. Since T11 = T22 and T12 = 0 must hold
everywhere, T1111 = T2222 = T1122 and T1212 = 0. Hence,H2 = H4 = H5 = 0 and
only H1 �= 0 is retained, and that is the function modelling the correlations in T .
One example is the constitutive response (e.g. conductivity kij = kδij) in con-
ventional models of stochastic partial differential equations; see Subsection 4.8.1
for a model with anisotropy.

When Tij represents a dependent field quantity, then a restriction dictated by
an appropriate field equation needs to be imposed. In the following, by analogy
to what was reported in (Malyarenko & Ostoja-Starzewski 2014), we consider T
being either the in-plane stress or the in-plane strain.

Restriction imposed on the correlation tensor when T is divergence-free

When T represents an in-plane stress field in the absence of any body forces,
it is governed by divT = 0 or Tij ,j = 0; here T is assumed to be symmetric
(Tij = Tji). We now find two (equivalent) restrictions imposed on the correlation
function of T :
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∂

∂z1
j

Tijkl = 0,
∂

∂z2
l

Tijkl = 0,

where the coordinate systems z1 and z2 are related by a shift z1 = z2 + z.
Let us rewrite (4.21) as

Tijkl ≡ 〈T (x), T (y)〉ijkl =
∑

n=1,2,4,5

hn(ρ)Lnijkl(ϕ)

=
∑

n=1,2,4,5

Hn(ρ)Nnijkl(ϕ),

where we have defined the modified functions for n = 4, 5:

H1 (z) := h1 (z) N1
ijkl := L

1
ijkl (z) = δijδkl

H2 (z) := h2 (z) N2
ijkl := L

2
ijkl (z) = δikδjl + δilδjk

H4 (z) := h4 (z) /z2 N4
ijkl := z2L4

ijkl (z) = δijzkzl + δklzizj
H5 (z) := h5 (z) /z4 N5

ijkl := z4L5
ijkl (z) = zizjzkzl.

Now, writing zj ≡ z1
j , we obtain

0 = Tijkl,j = H ′
1
zj

z N
1
ijkl +H1

d
dzj
N1
ijkl +H ′

2
zj

z N
2
ijkl +H2

d
dzj
N2
ijkl

+H ′
4
zj

z N
4
ijkl +H4

d
dzj
N4
ijkl +H ′

5
zj

z N
5
ijkl +H5

d
dzj
N5
ijkl.

where the prime denotes the ordinary derivative d/dz. Working it out more
explicitly, on account of (4.22), this general equation results in (with δii = 2 in
2D)

0 = Tijkl,j =H ′
1
zi

z δkl +H ′
2

(
zl

z δik + zk

z δil
)

+H ′
4

(
1
z zizkzl + δklziz

)
+H4 (δikzl + δilzk + 3δklzi)

+H ′
5zzizkzl +H5zizkzl.

Now, without loss of generality, choose the vector z ≡ (z1, z2) = (z, 0), so that
the eight non-trivial combinations become

0 = T1111,1 +T1211,2 = H ′
1 + 2H ′

2 + 3z2H ′
4 + 5zH4 + z4H ′

5 + 5z3H5 (4.25a)

0 = T1112,1 +T1212,2 = 0 (4.25b)

0 = T1121,1 +T1221,2 = 0 (4.25c)

0 = T1122,1 +T1222,2 = H ′
1 + z2H ′

4 + 3zH4 (4.25d)

0 = T2111,1 +T2211,2 = 0 (4.25e)

0 = T2112,1 +T2212,2 = 2H ′
2 (4.25f)

0 = T2121,1 +T2221,2 = 2H ′
2 (4.25g)

0 = T2122,1 +T2222,2 = 0. (4.25h)

Observe:

● conditions (4.25b), (4.25c), (4.25e) and (4.25h) are satisfied identically;
● conditions (4.25f) and (4.25g) imply H2 = const;
● the remaining three (scalar) functions H1, H4, H5 have to satisfy the two

equations (4.25a) and (4.25d).
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Restriction imposed on the correlation tensor when T

is a potential tensor field

When T represents an in-plane strain field, the displacement vector field plays
the rôle of its potential

T =
(∇u+ ∇u�) /2 or Tij = (ui,j +uj ,i ) /2.

This dictates a relation between the cocorrelation tensor Tijkl of T with the
correlation tensor Uik (z) := 〈ui (0)uk (z)〉 of u:

Tijkl = (Uik,jl +Uil,jk +Ujk,il +Ujl,ik ) /4. (4.26)

Thus, with the representation of Tijkl given above and the representation (3.46)

Uik (z) = δikK0 (z) + xixkK2 (z) ,

we arrive at the general restriction

4
∑

n=1,2,4,5Hn(ρ)Nnijkl(ϕ)

= {δikK0,jl + (δijδkl + δilδjk)K2 + (δilzk + δklzi)K2,j +zizkK2,jl }
+ {δilK0,jk + (δijδkl + δikδjl)K2 + (δikzl + δlkzi)K2,j +zizlK2,jk }
+ {δjkK0,il + (δijδkl + δjlδik)K2 + (δjlzk + δlkzj)K2,i +zjzkK2,il }
+ {δjlK0,ik + (δijδkl + δjkδil)K2 + (δjkzl + δlkzj)K2,i +zjzlK2,ik } .

This is rewritten more explicitly as

4 [H1δijδkl +H2 (δikδjl + δilδjk) +H4 (zkzlδij + zlzjδkl) +Hizizjzkzl]

=
{
δik

[
K ′′

0

zlzj
z2

+K ′
0

(
δjl −

zjzl
z2

)]
+ (δijδkl + δilδjk)K2

+ (δilzk + δklzi)K ′
2

zj
z

+ zizk

[
K ′′

2

zlzj
z2

+K ′
2

1
z

(
δjl −

zjzl
z2

)]}
+
{
δil

[
K ′′

0

zkzj
z2

+K ′
0

(
δjk −

zjzk
z2

)]
+ (δijδkl + δikδjl)K2

+ (δikzl + δklzi)K ′
2

zj
z

+ zizl

[
K ′′

2

zkzj
z2

+K ′
2

1
z

(
δjk −

zjzk
z2

)]}
+
{
δjk

[
K ′′

0

zlzi
z2

+K ′
0

(
δli −

zizl
z2

)]
+ (δijδkl + δjlδik)K2

+ (δjlzk + δklzj)K ′
2

zi
z

+ zjzk

[
K ′′

2

zlzi
z2

+K ′
2

1
z

(
δil −

zizl
z2

)]}
+
{
δjl

[
K ′′

0

zkzi
z2

+K ′
0

(
δki −

zizk
z2

)]
+ (δijδkl + δjkδil)K2

+ (δjkzl + δklzj)K ′
2

zi
z

+ zjzl

[
K ′′

2

zkzi
z2

+K ′
2

1
z

(
δik −

zizk
z2

)]}
.
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Now, choose the vector z ≡ (z1, z2) = (r, 0), so that the three non-trivial
autocorrelations and two cross-correlations become:

(i, j, k, l) = (1, 1, 1, 1) :H1 + 2H2 + z2H4 + z4H5 = K ′′
0 +K2 + 2zK ′

2 + z2K ′′
2

(i, j, k, l) = (2, 2, 2, 2) :H1 + 2H2 = K ′
0/z + 2K2

(i, j, k, l) = (1, 2, 1, 2) :4H2 = K ′
0/z + zK ′

2 +K2 +K ′′
0

(i, j, k, l) = (1, 1, 2, 2) :H1 + z2H4 = K2 + zK ′
2

(i, j, k, l) = (1, 1, 1, 2) :0 = 0.
(4.27)

It turns out that, effectively, the fifth equation is trivially satisfied. The first four
equations can be reduced to a single relation

3H1 + 3z2H4 + z4H5 = 3K2 + 2zK ′
2 + z2K ′′

2 , (4.28)

showing that, in a specific model or application, K2 needs to be chosen first.
The above relation would then lead to a restriction on H1, H4 and H5 functions.
Once these are set, one may proceed to determine H2 and K0.

Note: The Euler–Cauchy equation (4.28) for K2 is a linear inhomogeneous
ordinary differential equation.

Special case #1: when the material has a very high shear stiffness relative
to bulk stiffness, then the shear strains are practically equal to zero everywhere,
so T1212 = 0. Then, (4.26) simplifies to

(i, j, k, l) = (1, 1, 1, 1) :H1 + 2H2 + 2z2H4 + z4H5 = K ′′
0 +K2 + 2zK ′

2 + z2K ′′
2

(i, j, k, l) = (2, 2, 2, 2) :H1 + 2H2 = K ′
0/z + 2K2

(i, j, k, l) = (1, 2, 1, 2) :0 = K ′
0/z + zK ′

2 +K2 +K ′′
0

(i, j, k, l) = (1, 1, 2, 2) :H1 + z2H4 = K2 + zK ′
2.

Now, these four equations can be reduced to a single relation

3H1 + 4H2 + 3z2H4 + z4H5 = 3K2 + 2zK ′
2 + z2K ′′

2 . (4.29)

Note: Comparing with (4.28), the inhomogeneous term in the Euler–Cauchy
equation (4.29) now also contains 4H2.

Special case #2: when the material has a very high bulk stiffness rela-
tive to the shear stiffness, then the normal strains are practically equal to zero
everywhere, so T1111 = T2222 = T1122 = 0. In this case, (4.27) simplifies to

(i, j, k, l) = (1, 1, 1, 1) : 0 = K ′′
0 +K2 + 2zK ′

2 + z2K ′′
2

(i, j, k, l) = (2, 2, 2, 2) : 0 = K ′
0/z + 2K2

(i, j, k, l) = (1, 2, 1, 2) : 4H2 = K ′
0/z + zK ′

2 +K2 +K ′′
0

(i, j, k, l) = (1, 1, 2, 2) : 0 = K2 + zK ′
2.
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Now, these four equations can be reduced to a single relation

− 4H2 = 3K2 + 2zK ′
2 + z2K ′′

2 . (4.30)

Note: The Euler–Cauchy equation (4.30) for K2 is a linear inhomogeneous
ordinary differential equation.

4.6 TRFs in Micropolar Continuum Mechanics

4.6.1 Asymmetric Stress Fields

The conservation equations of linear and angular momenta in a micropolar con-
tinuum have been given in Chapter 1. Henceforth, focusing on a static problem
in the absence of body forces and moments, we have

σji,j = 0, (4.31a)

εijkσjk + μji,j = 0. (4.31b)

For a statistically homogeneous case, from (4.31b) it follows that

〈εijkσjk(z)εprsσrs(z + z1)〉 = 〈μji,j (z)μrp,r (z + z1)〉 . (4.32)

The left-hand side may be written as

LHS = εijkεprsQrsjk,

where

Qrsjk(z) := 〈σjk(z1)σrs(z1 + z)〉

is the correlation function of the stress field. Since σjk is generally asymmetric
but, by assumption, statistically isotropic, we have

Qrsjk(z) = Qjkrs(z). (4.33)

Now, given that a rank 2 tensor can be interpreted as a dyadic, we may begin
with the general representation of a rank 4 correlation tensor (Batchelor 1982)

Qrsjk(z) = Anjnknrns +Bnjnkδrs + Cnknrδjs +Dnrnsδjk + Enjnsδkr
+Fnjnrδks +Gnknsδjr +Hδjkδrs + Iδjrδks + Jδjsδkr,

which involves 10 functions: A(z), B(z), . . . , J(z). But, by the homogeneity
property, we also have

Qjkrs(z) = Anjnknrns +Bnrnsδjk + Cnjnsδrk +Dnjnkδrs + Enknrδsj
+Fnrnjδks +Gnsnkδjr +Hδrsδjk + Iδksδjr + Jδkrδjs.

In view of (4.33), we obtain

B = D, C = E,
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so that Qrsjk(z) actually employs 8 unknown functions (A, B, C, F, G, H, I, J):

Qrsjk(z) = Anjnknrns +B (njnkδrs + nrnsδjk) + C (nknrδjs + njnkδkr)
+Fnjnkδks +Gnknsδjr +Hδjkδrs + Iδjrδks + Jδjsδkr.

It follows separately from (4.32) that its right-hand side may be written as

RHS = Rpi ,

where Rpi (z) := 〈μji,j (z)μrp,r (z + z1)〉 is the correlation function of a homo-
geneous couple-stress TRF. This being a rank 2 tensor, its representation has a
familiar form

Rpi (z) = f(z)ninp + g(z)δip

with

Rpi (z) = Rip(z).

Equation 4.31a implies

Qrsjk,j (z) = 0, Qjkrs ,r (z) = 0

which, respectively, lead to

Qrsjk,j (z) = (A′ + 2A/z)nknrns +B′ (nkδrs + nknrns)
+ 1

rB (2nkδrs + nsδkr + nrδsk − nknrns)
+C ′ (nknrns + nsδkr) + C (nrδks + nkδrs + 2nsδkr − nknrns) /z
+ 2Fnrδks/z + F ′nrδks +G′nknrns +G (nsδkr + nkδsr − 2nknrns) /z
+H ′nkδrs + I ′nrδks + J ′nsδkr.

By considering all the combinations of values (1, 2, 3) of indices (k, r, s), we find
a set of four equations⎧⎪⎪⎨⎪⎪⎩

A′ +A/z +B′ − 2B/z +G′ − 2G/z + C ′ − 2C/z = 0,
B/z −G/z + J ′ + C ′ + 2C/z = 0,
B/z + 2F/z + F ′ + I ′ + C/z = 0,
B′ + 2B/z +G/z +H ′ + C/z = 0.

(4.34)

Equation 4.31b implies

εijkεprsQ
rs
jk(z) = Rpi (z),

or, more explicitly,

εijkεprs [Anknrns +B (njnkδrs + nrnsδjk) + C (nknrδjs + njnsδkr)
+Fnjnrδks +Gnknsδjr +Hδjkδrs + Iδjrδks + Jδjsδkr]

= fninp + gδip, i, j, k, p, r, s,= 1, 2, 3.

By considering all these combinations

(i, p) = (1, 1), (i, p) = (1, 2), (i, p) = (1, 3)
(i, p) = (2, 1), (i, p) = (2, 2), (i, p) = (2, 3)

(i, p) = (3, 3),
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with values (1 . . . 3) of the indices (k, r, s), we find a set of two equations{
f (n1n1 + n2n2 + n3n3) + g = 2I − 2J,

2C − F −G = f.
(4.35)

To sum up, (4.34) and (4.35) represent 4 + 2 = 6 equations for 10 unknown
functions: (A, B, C, F, G, H, I, J) and (f , g).

4.6.2 Correlations of Displacement, Rotation and Strain TRFs

First, with reference to Equation 1.75, recall that in the micropolar media the
deformation measure conjugate to the Cauchy stress is the strain. Its correlation
function is

Γ prij (z) := 〈γij(z1)γpr(z1 + z)〉,

while the correlation function of the microrotation field is

Φlk(z) := 〈ϕk(z1)ϕl(z1 + z)〉.

In view of (1.75), given that Γ prij (z) is wide-sense homogeneous,

Γ prij (z) := 〈 (uj ,i−εkijϕk)|0 (ur,p−εlprϕl)|z〉
= 〈uj ,i |0 ur,p |z〉 − 〈uj ,i |0 εlprϕl|z〉 − 〈εkijϕk|0 ur,p |z〉

+ 〈εkijϕk|0 εlprϕl|z〉
= 〈uj ,i |0 ur,p |z〉 + 〈εkijϕk|0 εlprϕl|z〉,

where the last line follows from the basic tenet of the micropolar theory that
u and ϕ are independent kinematic degrees of freedom at every point of the
continuum. Hence,

Γ prij (s) = Ur,pj,i (z) + εkijεlprΦlk(z)
or

Γ (z) = ∇∇Urj (z) + EEΦ(z),
(4.36)

where E is the Levi-Civita tensor. The above relation involves correlation
functions of:

(i) the generally asymmetric second-rank tensor γ having the form (involving
eight coefficients Aγ . . . Jγ)

Γ prij (z) = Aγninjnpnr +Bγ (ninjδpr + npnrδij) + Cγ (njnpδir + ninrδjp)

+ Fγninpδjr +Gγnjnrδip +Hγδijδpr + Iγδipδjr + Jγδirδjp;

(ii) the generally asymmetric second-rank tensor ∇u having the form (involving
eight coefficients Au . . . Ju)

Ur,pj,i (z) = Auninjnpnr +Bu (ninjδpr + npnrδij) + Cu (njnpδir + ninrδjp)

+ Funinpδjr +Gunjnrδip +Huδijδpr + Iuδipδjr + Juδirδjp;
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(iii) the first rank tensor ϕ having the form (involving 2 coefficients f, g)

Φlk (z) = fzkzl + gδkl.

Now, εkijεlprΦlk(r) yields

εkijεlprΦ
l
k (z) = εkijεlpr [fzkzl + gδkl]

= εkijεlprfzkzl + εlijεlprg = εkijεlprfzkzl + (δipδjr − δirδjp) g,

which has to equal Γ prij (z) − Ur,pj,i (z). Thus, rewriting (4.36) as

ekijεlprΦ
l
k(z) = Γ prij (z) − Ur,pj,i (z),

we have to examine

εkijεlprfzkzl + (δipδjr − δirδjp) g

= Aγninjnpnr +Bγ (ninjδpr + npnrδij) + Cγ (njnpδir + ninrδjp)

+ Fγninpδjr +Gγnjnrδip +Hγδijδpr + Iγδipδjr + Jγδirδjp

− [Auninjnpnr +Bu (ninjδpr + npnrδij) + Cu (njnpδir + ninrδjp)]

− [Funinpδjr +Gunjnrδip +Huδijδpr + Iuδipδjr + Juδirδjp] .

The 45 cases are given in Ostoja-Starzewski et al. (2015). Collecting all these
results, gives

Aγ −Au = Bγ −Bu = Hγ −Hu = 0,
Cγ − Cu = f, Fγ − Fu = Gγ −Gu = −f, Iγ − Iu = −(Jγ − Ju),

Iγ − Iu = f (n11 + n22 + n33) + g,

so that, we have eight relations for 18 unknown coefficients in three correlation
functions.

4.7 TRFs of Constitutive Responses

4.7.1 From a Random Microstructure to Mesoscale Response

With reference to Table 1.1, consider the response on a mesoscale, i.e. a scale
finite relative to the heterogeneity size such as indicated in Figures 0.1 and 4.1.
The basic question concerns the trend – either rapid, moderate, or slow – of
mesoscale constitutive response, with L/d increasing, to the situation postulated
by Hill (1963):

a sample that (a) is structurally entirely typical of the whole
mixture on average, and (b) contains a sufficient number of
inclusions for the apparent overall moduli to be effectively inde-
pendent of the surface values of traction and displacement, so
long as these values are macroscopically uniform.

In essence, (a) is a statement about the material’s statistics being spatially
homogeneous and ergodic, while (b) is a pronouncement on the independence
of effective constitutive response with respect to the boundary conditions. Both
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Figure 4.1 (a) Circular-inclusion composite, showing a mesoscale window. (b)
Random two-phase checkerboard in 2D. (c) Deproteinised trabecular bone
(Hamed et al. 2015). (d) Random polycrystal in 3D where the colour scale
represents a different orientation of each grain.

of these are issues of mesoscale L of the domain of random microstructure over
which smoothing (or homogenisation) is being done relative to the microscale d
and macroscale Lmacro.

Introducing a non-dimensional parameter characterising the mesoscale

δ = L/d, (4.37)

consider the random mesoscale material Bδ occupying a square- (or cubic)-shaped
domain Dδ ∈ Ed, d = 2 (3) with boundary ∂D. The set of its possible states is

Sδ = {Sδ(ω);ω ∈ Ω} . (4.38)

This is shown in Figure 4.1(b) with a square-shaped domain (d = 2). Here
Sδ(ω) is one deterministic realisation, described more specifically by a mesoscale
window of the stiffness tensor field over Dδ. Properties on a mesoscale are also
described by an adjective apparent, as opposed to effective. The latter term per-
tains to the limit L/d→ ∞ as it connotes the passage to the RVE, while, unless
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there is finite-scale periodicity in the medium, any finite mesoscale involves sta-
tistical scatter and, therefore, describes some Statistical Volume Element (SVE).
Clearly, δ = 0 signifies the pointwise (finest scale) description of the material,
while δ → ∞ is the RVE limit.

In general, we also use Bδ to denote a placement or reference configuration of
the body in ∂Bδ ⊂ Rd, on which the deformation map, force and stress fields are
defined. The domain Bδ and its boundary ∂Bδ is assumed to be regular in the
sense conventionally assumed in continuum mechanics (∂Bδ is piecewise smooth
and Lipschitz, Bδ and ∂Bδ each consist of finite numbers of disjoint components).

The setting is one of quasi-static loading with negligible body forces, so that
the body is governed locally by the equilibrium equation ∇·σ = 0, with σ (= σij)
being the Cauchy stress. (The case of dynamic loading largely remains an open
challenge.) Considering a body Bδ(ω) with a given microstructure, as a result
of some boundary conditions (assuming the absence of body and inertia forces),
there are stress and strain fields σ and ε. If we represent them as a superposition
of the means (σ and ε) with the zero-mean fluctuations (σ′ and ε′)

σ(ω,x) = σ + σ′(ω,x) ε(ω,x) = ε+ ε′(ω,x),

we find for the volume average of the energy density over Bδ(ω)

U ≡ 1
2V

∫
Bδ(ω)

σ(ω,x) : ε(ω,x)dV =
1
2
σ : ε =

1
2
σ : ε+

1
2
σ′: ε′ .

(While the overbar (·) indicates a volume average, 〈·〉 stands for the ensemble
(statistical) average.) Thus, we see that the volume average of a scalar product
of stress and strain fields equals the product of their volume averages

σ : ε = σ : ε
energetic interpretation = mechanical interpretation

(4.39)

if and only if σ′ : ε′ = 0.
By analogy to statistics, if we replace the ensemble average by the spatial

average, we may say that stress and strain fields are ‘spatially uncorrelated’.
Relation (4.39) is called the Hill–Mandel condition in the (conventional) volume
average form (Hill 1963; Dantu & Mandel 1963; Huet 1990; Sab 1991; Stolz 1986;
Zohdi et al. 1996). This condition is satisfied by either of three different types of
uniform boundary conditions on the mesoscale:
uniform displacement (also called kinematic, essential or Dirichlet) (d)

u(x) = ε0 · x ∀x ∈ ∂Bδ; (4.40)

uniform traction (also called static, natural or Neumann) (t)

t(x) = σ0 · n ∀x ∈ ∂Bδ; (4.41a)

uniform displacement-traction (also called orthogonal-mixed) (dt)[
u(x) − ε0 · x

]
·
[
t(x) − σ0 · n

]
= 0 ∀x ∈ ∂Bδ. (4.42)
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Here we employ ε0 and σ0 to denote constant tensors, prescribed a priori, and
note, from the average strain and stress theorems: ε0 = ε and σ0 = σ.

Since the strain is presscribed in the boundary condition (4.40), it results in
a mesoscale stiffness tensor Cdδ(ω). Similarly, since the stress is prescribed in
(4.41a), it yields a mesoscale compliance tensor Stδ(ω). Finally, (4.42) results in
a mesoscale stiffness (or, depending on the interpretation, compliance) tensor
Cdtδ (ω). The argument ω indicates their random character, while δ their scale
dependence, so that these tensors pertain to the statistical volume element (SVE)
responses mentioned early in this book.

The SVE plays the role of a continuum point of TRF models of constitutive
continuum theories, such as discussed in Chapter 1. The randomness vanishes
as δ → ∞, and this is the macroscale response C∞ of a representative volume
element (RVE), where a deterministic continuum picture is obtained.

4.7.2 Hierarchy of Mesoscale Bounds

There is relation ordering the three mesoscale responses (Hazanov & Huet 1994):

[Stδ(ω)]−1 ≤ Cdtδ (ω) ≤ Cdδ (ω), (4.43)

The inequalities are understood in the same sense as in the definition of positive-
definiteness: if A and B are the rank 4 tensors, then A ≤ B means e : A : e ≤ e :
B : e, for any symmetric rank 2 tensor e. From this we obtain 〈Stδ(ω)〉−1 ≤ C∞ ≤〈
Cdδ (ω)

〉
. The response C∞ always lies between Stδ(ω) and Cdδ (ω), and displays

much weaker scale effects than the other two. It is identified with Ceff (ω) in
light of the spatial homogeneity of the material and then, by ergodicity, the
ω-dependence is dropped.

Using the minimum potential energy principle for boundary value problems
under displacement boundary condition (4.40), in combination with the assump-
tion of spatial homogeneity and ergodicity of random microstructure, one arrives
at the result that, the greater is the material domain, the softer is the ensemble
averaged stiffness. Similarly, by the minimum complementary energy principle
for the traction boundary condition (4.41a) one concludes that, simultaneously,
the higher is the ensemble averaged compliance. Combining these results, we
have a hierarchy of scale-dependent bounds on the RVE response〈
St1
〉−1 ≤

〈
Stδ′
〉−1 ≤

〈
Stδ
〉−1 ≤C∞ ≤

〈
Cdδ
〉
≤
〈
Cdδ′
〉
≤
〈
Cd1
〉
, ∀δ′ < δ. (4.44)

Here we recognise the Reuss bound (CR =
〈
St1
〉−1) and the Voigt bound

(CV =
〈
Cd1
〉
), which clearly possess no scale dependence, and neither do the

Hashin–Shtrikman bounds, which do not appear here. The hierarchy (4.44) can
quantitatively be determined by computational treatment of two boundary value
problems, and these have to be repeated a number of times to sample the space
(4.38) in a Monte Carlo sense.
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In general, for any given realisation Bδ (ω) of (4.38), Cdδ (ω) and Stδ (ω) are
anisotropic. The same conclusion holds for the anti-plane tensors Cdδ (ω) (Cij :=
C3i3j) and Stδ (ω) (Sij := S3i3j) (recall Section 1.1.2) and, by analogy, any rank 2
response tensor (recall Table 1.1). The same hierarchy as (4.44) holds for these
two tensors and, on account of the statistical isotropy, there is the hierarchy of
bounds on the isotropic conductivity measure

cH ≤
〈
stδ′
〉−1 ≤

〈
stδ
〉−1 ≤ c∞ ≤

〈
cdδ
〉
≤
〈
cdδ′
〉
≤ cA, ∀δ′ < δ. (4.45)

where each crystal’s conductivity is characterised by three principal values
(c1, c2, c3,), while

cH = [(1/c1 + 1/c2 + 1/c3) /3]−1 and cA = (c1 + c2 + c3) /3

are, respectively, the harmonic mean (Reuss type) and arithmetic mean (Voigt
type) estimates.

While the hierarchy (4.45) describes the scaling trend to the first invariant
of mesoscale tensors, the coefficient of variation of the second invariant for sev-
eral different planar random microstructures generated by homogeneous Poisson
point fields was found to be ∼ 0.55 (Ostoja-Starzewski 1999).

Hierarchies generalising (4.44) and (4.45) have been obtained for a range of
other materials: non-linear and or/inelastic random materials (elasto-plastic,
viscoelastic, permeable and thermoelastic) of classical Cauchy type and elastic
micropolar (Cosserat type); see Ostoja-Starzewski et al. (2016).

4.7.3 Scaling Function

Uncorrelated microstructures

Suppose we deal with a polycrystal: a statistically isotropic response is obtained
if the crystal orientations are uniformly distributed on a unit sphere, while a
deterministically isotropic response is obtained upon ensemble averaging on any
mesoscale. For the latter type of response, in terms of the anti-plane tensors
Cdδ (ω) and Stδ (ω), we have〈

Cdδ
〉

= cdδI,
〈
Stδ
〉

= stδI.

where I is the rank 2 identity tensor. By contracting the above equation, we
obtain 〈

Cdδ
〉

:
〈
Stδ
〉

= 3cdδs
t
δ (4.46)

In the infinite volume limit δ → ∞ (RVE level) one tensor is the exact inverse
of another

lim
δ→∞

〈
Cdδ
〉

:
〈
Stδ
〉

= 3. (4.47)

Now, we postulate the following relationship between the left-hand sides of (4.46)
and (4.47): 〈

Cdδ
〉

: 〈Stδ〉= limδ→∞
〈
Cdδ
〉

: 〈Stδ〉 + g(c1, c2, c3, δ)
≡ limδ→∞

〈
Cdδ
〉

: 〈Stδ〉 + g(k1, k2, c3, δ),
(4.48)



4.7 TRFs of Constitutive Responses 257

where g(c1, c2, c3, δ) (or g(k1, k2, c3, δ)) defines the scaling function, with k1 =
c1/c3 and k2 = c2/c3 being two non-dimensional parameters; see Ranganathan
& Ostoja-Starzewski (2008a) and Ranganathan & Ostoja-Starzewski (2008b).
The equations (4.46) and (4.47) into (4.48) jointly lead to

g(k1, k2, c3, δ) = g(k1, k2, δ) = 3
(
cdδs

t
δ − 1

)
, (4.49)

where c3 has been removed since it is the only dimensional term. The scaling
function of (4.49) applies to aggregates made up of biaxial single crystals (e.g.
mica, gypsum, barite and rhodonite), whereas for tetragonal (e.g. urea, zircon),
hexagonal (e.g. graphite) or trigonal crystals (e.g. calcite, hematite, quartz),
k1 = k2 = k and (4.49) can be rewritten as g(k, δ) = 3

(
cdδs

t
δ − 1

)
.

Theoretically, the scaling function becomes zero only when the number of
grains is infinite (i.e. δ → ∞) or when the crystal is locally isotropic with k = 1
(such as for cubic crystals). One can further establish the following bounds on the
scaling function for aggregates made up of single crystals with uniaxial thermal
character (k1 = k2 = k for trigonal, hexagonal and tetragonal single crystals,
with k also being a measure of a single crystal’s anisotropy)

0 ≤ g(k, δ) ≤ 2
3

(√
k− 1√

k

)2

.

In that case,

g(k, δ) =
2
3

(√
k − 1√

k

)2

exp
[
−0.91

√
δ − 1

]
.

offers a very good fit to extensive computational results. Also, on account of
the hierarchy (4.45), we have

(
cdδs

t
δ − 1

)
≤
(
cA/cH − 1

)
; for further details see

Ranganathan & Ostoja-Starzewski (2008a).
In the case of a composite with planar random checkerboard, at all nomi-

nal volume fractions, this stretched-exponential form provides a very good fit
(Raghavan, Ranganathan & Ostoja-Starzewski 2015):

f(vf , k, δ) = 2vf (1 − vf )
(√

k − 1√
k

)2

exp[−0.73(δ − 1)0.5]. (4.50)

Here k1 = c1/c2 where ci (i = 1, 2) is the isotropic conductivity of phase i and
vf is the volume fraction.

Correlated microstructures

The foregoing concepts can be extended to spatially correlated microstructures.
For example, Figure 4.2 shows a micrograph (a) and a simulation (b) of 2D
interpenetrating phase composites (IPCs), where either phase is interconnected
throughout the microstructure (Clarke 1992). The simulation of this statisti-
cally isotropic two-phase microstructure is based on a Gaussian-type correlation
function
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Figure 4.2 (a) A micrograph of Al2O3/Ni (Aldrich et al. 2000) at v = 0.5
and ls calculated to be 2.92. (b) A numerically generated micrograph with
λ = 4.56 that is calculated so as to have the same ls and v as the experimental
micrograph. (c) The covariance of the experimental (a) and corresponding
numerically generated (b) microstructures. Reproduced from Kale et al. (2015)
with the permission of AIP publishing.

ρ(x) = exp
(
−γr2

)
, with r2 = x2 + y2,

using a Fourier filtering method based algorithm (Makse, Havlin, Schwartz &
Stanley 1996; Kale et al. 2015). Here γ is the integral length scale, related to the
correlation length (λ =

∫∞
0
ρ(r) dr) by γ = π/4λ2. The characteristic length scale

ls =
[∫∞

0
rρm(r)dr

]1/2
of the phases in a microstructure, is related to λ and v

(volume fraction of one phase) by ls = V (v)λ. Here V (v) = cva(1− v)a/B(a, a),
where B(a, a) is the beta function with a and c being the fitting constants. The
two-phase field is generated by thresholding, with the threshold chosen according
to the desired volume fraction v.

The scaling function g(δ/λ, k, v) of this microstructure, with k being the phase
contrast, can be factored as

g(δ/λ, k, v) = h(δ/λ) · 2v(1 − v)
(√

k − 1√
k

)2

,

where h(δ/λ) is the normalised scaling function; c � 4.4, b � 2.5 and n � 1.16.

Elastic microstructures

Hierarchies of scale-dependent bounds (4.44) carry through for rank 4 response
tensors and, in the case of statistical isotropy, we obtain the hierarchies of bounds
on the shear and bulk moduli:

GR ≤ 〈Gtδ′〉
−1 ≤ 〈Gtδ〉

−1 ≤ G∞ ≤
〈
Gdδ
〉
≤
〈
Gdδ′
〉
≤ GV ,

KR ≤ 〈Kt
δ′〉

−1 ≤ 〈Kt
δ〉

−1 ≤ K∞ ≤
〈
Kd
δ

〉
≤
〈
Kd
δ′
〉
≤ KV ,

∀δ′ < δ,

where (GR,KR) and (GV ,KV ) represent, respectively, the Reuss and Voigt esti-
mates of shear and bulk moduli. Note that the averaged stiffness and compliance
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tensors can be expressed in terms of the scale- and boundry condition dependent
shear and bulk moduli as follows:〈

Cdδ
〉

= 2
〈
Gdδ
〉
K + 3

〈
Kd
δ

〉
J, (4.51a)〈

Stδ
〉

=
1

2
〈
Gdδ
〉K +

1
3
〈
Kd
δ

〉J. (4.51b)

In the above, J and K represent the spherical and the deviatoric parts of the
unit fourth-order tensor I. By contracting (4.51a,b), we obtain〈

Cdδ
〉

:
〈
Stδ
〉

= 5

〈
Gdδ
〉

〈Gtδ〉
+

〈
Kd
δ

〉
〈Kt

δ〉
, (4.52)

whereby we note

lim
δ→∞

〈
Cdδ
〉

:
〈
Stδ
〉

= 6. (4.53)

By postulating the following relationship between the left-hand sides of (4.52)
and (4.53), we get〈

Cdδ
〉

:
〈
Stδ
〉

= lim
δ→∞

〈
Cdδ
〉

:
〈
Stδ
〉

+ f (Cij , δ) , (4.54)

which defines the elastic scaling function. Clearly, limδ→∞ f (Cij , δ) = 0. The
parameter Cij represents all the independent single-crystal elastic constants
depending on the crystal type. For aggregates made up of cubic single crys-
tals, Cij = (C11, C12, C44), while for triclinic systems Cij will include all the 21
independent single-crystal constants. In light of (4.52) and (4.53), (4.54) yields

f (Cij , δ) = 5
GV

GR
+
KV

KR
− 6. (4.55)

For the special case of cubic crystals, the bulk modulus is scale-independent
(Ranganathan & Ostoja-Starzewski 2008b; Mendelson 1981) and (4.7) can be
rewritten as f (C11, C12, C44, δ) = 5

(〈
Gdδ
〉
/ 〈Gtδ〉 − 1

)
. Note that the scaling

function is null if the crystals are locally isotropic.
One can further establish the following bounds on the scaling function

f (Cij ,∞) ≤ f (Cij , δ) ≤ f (Cij , δ′) ≤ f (Cij , 1) , ∀1 ≤ δ′ < δ ≤ ∞,

leading to

0 ≤ f (Cij , δ) ≤ f (Cij , δ′) ≤ AU4 (1) , ∀1 ≤ δ′ < δ ≤ ∞, (4.56)

where

AU4 (1) = 5GV /GR +KV /KR − 6 (4.57)

is the so-called universal anisotropy index quantifying the single-crystal
anisotropy of the fourth-rank elasticity tensor (Ranganathan & Ostoja-
Starzewski 2008c). This index is increasingly proving to be of use to many
researchers in condensed matter physics (including superconductivity), mate-
rials science and engineering and geophysics; see (Walker & Wookey 2012) for
the mapping of entire Earth’s surface.
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Based on (4.56) one can interpret the elastic scaling function in (4.55) as the
evolution of the equivalent anisotropy in the mesoscale domain, thus

f (Cij , δ) = AU4 (δ) . (4.58)

The simplest form of (4.58) having a separable structure:

f (Cij , δ) = AU4 (δ) = AU4 (1)h4 (δ)

is a very good approximation for single-phase aggregates made up of crystals of
cubic type. The scaling function depends on the Zener anisotropy (A) and the
mesoscale, and takes the following form based on numerical simulations:

f (Cij , δ) = AU4 (δ) = AU4 (1)h4 (δ)

� 6
5

(√
A− 1√

A

)2

exp
[
−0.77 (δ − 1)0.5

]
.

(4.59)

The stretched-exponential form also applies to viscoelastic random media
(Ostoja-Starzewski et al. 2016).

4.7.4 Mesoscale TRF

Suppose we want to determine the torsional response of a square cross-section rod
having the two-phase microstructure in the (x1, x2)-plane shown in Figure 4.3,
not changing in the x3-direction. Clearly, for significant mismatch between the
black and white phases, there is no separation of scales. In light of the preceding
discussion, there are three ways to define the mesoscale response: via (4.40), or
(4.42), or (4.41a). Thus, three are three different TRFs of constitutive responses
that one may set up, of which the first and the third have bounding characters
(Ostoja-Starzewski 2008):

Sdδ = {Bδ(ω);ω ∈ Ω} defined through Cdδ (4.60a)

Sdtδ = {Bδ(ω);ω ∈ Ω} defined through Cdtδ (4.60b)

Stδ = {Bδ(ω);ω ∈ Ω} defined through Stδ. (4.60c)

In view of the variational principles involved in the derivation of Cdδ and Stδ
tensors, they bound the Cdtδ stiffness from above and below, respectively.

The TRFs defined by (4.60a) and (4.60c), separately, provide inputs to two
finite-element schemes – based on minimum potential and complementary energy
principles, respectively – for bounding the macroscopic response. While in the
classical case of a homogeneous material, these bounds are convergent with the
finite elements becoming infinitesimal, the presence of a disordered non-periodic
microstructure prevents such a convergence and leads to a possibility of an opti-
mal mesoscale. The method has been demonstrated on the torsion of the rod of
Figure 4.3 (Ostoja-Starzewski 1999).

In light of Equations 1.13a,b, it is tempting to set up an average stiffness ten-
sor random field. The simplest way to proceed is to take/estimate the average
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Figure 4.3 A two-phase material with a Voronoi mosaic microgeometry of a
total 104, 858 black and white cells, at volume fraction 50% each (Ostoja-
Starzewski 1999).

stiffness as a constant tensor C∞ = Ceff of (4.44) plus a zero-mean noise
corresponding to the mesoscale δ one wants to consider

Cijkl(ω,x) = Ceffijkl + C′
ijkl(ω,x),

〈
C′
ijkl(ω,x)

〉
= 0. (4.61)

Upon averaging of (4.61) one obtains Ceffijkl, which, under the assump-
tion of local statistical isotropy of C′

ijkl(ω,x) reduces to Cijkl = λδijδkl +
μ (δikδjl + δilδjk). However, if one simply solves a macroscopic boundary value
problem lacking the separation of scales with the average stiffness field Ceffijkl, the
resulting macroscopic response may fall outside the range which one would get
using the Dirichlet and Neumann-type bounds on mesoscales.

Consider Cdδ to be the anti-plane part of the rank 4 stiffness tensor, recall (1.45)
in Chapter 1. The probability densities of half-traces of that tensor, as described
by the hierarchy (2.6) are shown in terms of their histograms in Figure 4.4. Note
the expected convergence of ensemble-averaged half-traces of Cdδ and Stδ tending
to a causal distribution with δ increasing. Given the strong skewness of Cdδ , the
non-Gaussian character of that TRF (and a similar one of Stδ) is obvious. Given
the need for a finite support of the probability distribution of Cijkl(ω), the Beta
probability distribution has been found to provide the most satisfactory and
universal fits for this as well as for other types of two-phase composites over a
wide range of contrasts and mesoscales.

One more avenue for defining the mesoscale constitutive response is to pos-
tulate of a periodic microstructure representative in some acceptable sense of
the true (and non-periodic) random microstructure. This step then allows the
imposition of periodic boundary conditions on a periodic mesoscale window:

ui (x+L) = ui (x) + ε0ijLj ti (x) = −ti (x+L) ∀x ∈ ∂B, (4.62)
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Figure 4.4 Probability densities of half-traces ( 1
2

(C11 + C22)) of Cd
δ are shown

at four mesoscales (δ = 10, 20, 40 and 80) of the two-phase microstructure of
Figure 4.3 at phase mismatch 2, 000. Also indicated by bold dots are the aver-

ages
〈
Cd

δ

〉
and

〈
St

δ

〉−1
; the dots are curve fitted to display two-dependent

hierarchies of bounds (4.44). Figure reproduced from Ostoja-Starzewski
(1999).

where ε0ij is the applied strain, ti is the traction on the boundary ∂B of B,
and L = Lei, with ei being the unit base vector. Depending on the size of
periodicity L, the resulting stiffness tensor will display some scale dependence,
which typically abates as L is taken much larger than the microscale (say, an
average grain size). With (4.62) resulting in Cperδ , this leads to a fourth possible
TRF of constitutive response
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Sper = {B(ω);ω ∈ Ω} defined through Cperδ (4.63)

While the Cdδ and Stδ tensors lead to rather large estimates of RVE size, espe-
cially with the contrast in material properties increasing, (4.62) leads to estimates
of Ceff with a much weaker scale dependence (Sab & Nedjar 2005); see also
Bostanabad et al. (2018); Wu et al. (2018). For homogenisation of random media
by micropolar continua see Trovalusci et al. (2015); Trovalusci et al. (2014).

There is also a possibility of defining the mesoscale response from a Robin
boundary condition (i.e. a linear combination of Dirichlet and Neumann condi-
tions), although it is not known what that combination should be. In general,
the mesoscale constitutive response of a continuum point of a macroscopic field
model is a function of the actual strain (and stress) at that point, both of which
are unknown a priori. Ideally, if one were to use a finite element method for solv-
ing a macroscopic boundary value problem (MBVP), the constitutive response
of each and every finite element should be computed by a mesoscale upscaling
according to the actual stress/strain state, which would then be sent as input
into the MBVP to recompute all the fields and responses of all the finite ele-
ments, and so on. Clearly, this type of an iterative procedure, even for a single
realisation of random medium is very costly.

4.8 Stochastic Partial Differential Equations

4.8.1 Elliptic Equations: Example Application

With reference to Chapter 1, we start with the Dirichlet conduction problem for
the T field on domain D ⊂ R2, under the conductivity TRF and body force RF,

− (kij (x, ω)T,j ) ,i = f (x, ω) ∀x ∈ D,
T (x, ω) = g (x) ∀x ∈ ∂D. (4.64)

The variational formulation of (4.64) is based on a straightforward generalisation
of Lord et al. (2014, Assumption 2.34); see also Demengel & Demengel (2012). Fix
ω ∈ Ω and consider the variational problem of determining a function T (x, ω) ∈
H1(D) for which the functional

1
2

∫
D
kij(x, ω)T,i (x, ω)T,j (x, ω) dx−

∫
D
f(x, ω)T (x, ω) dx (4.65)

attains infimum on the set

{T (x, ω) ∈ H1(D) : T = g on ∂D }. (4.66)

Here, H1(D) denotes the Sobolev space.

Theorem 38. Assume that the boundary value problem (4.64) satisfies the
following conditions:
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1. The set D is bounded, open and uniformly of class C1; see Demengel &
Demengel (2012 Definition 2.66).

2. P{ω : f(x, ω) ∈ L2(D) } = 1.
3. P{ω : ‖k(x, ω)‖ ∈ L∞(D) } = 1.
4. The random field k(x) takes values in S2(R2).
5. The random field k(x) is uniformly elliptic P-a.s., that is, there exists an

α > 0 such that for all x ∈ R2 we have

2∑
i,j=1

kij(x, ω)xixj ≥ α‖x‖2.

6. P{ω : g(x, ω) ∈ H1/2(∂D) } = 1.

Then, there exists a unique T (x, ω) ∈ H1(D) such that the functional (4.65)
attains infimum on the set (4.66) P-a.s.

Proof. Fix ω ∈ Ω outside the P-null set where conditions 2, 3, 5 and 6 fail, and
follow the proof in Demengel & Demengel (2012, Subsection 5.6.1).

Remark 4. The function T for which the functional (4.65) attains infimum on the
set (4.66), solves the Dirichlet problem (4.64) in the sense of distributions. If we
would like to obtain a classical solution to the above Dirichlet problem, we have
to strengthen conditions of Theorem 38. Using Sobolev embeddings (Demengel
& Demengel 2012), we conclude that T is twice continuously differentiable P-a.s.
if T ∈ H4(D) P-a.s. By Demengel & Demengel (2012, Subsection 5.6.1), this
can be achieved if Conditions 1, 2, 3 and 6 of Theorem 38 are replaced by the
following conditions:

1′ D is a bounded open domain of uniform class C4;
2′ P{ω : f(x, ω) ∈ H2(D) } = 1;
3′ P{ω : ‖k(x, ω)‖ ∈ C3(D) } = 1;
6′ P{ω : g(x, ω) ∈ H7/2(∂D) } = 1.

4.8.2 Hyperbolic Equations: Example Application

The localisation of mechanical fields at the ends of structural members is treated
through the Saint-Venant’s Principle. Its dynamic counterpart, called Dynamic
Saint-Venant’s Principle, dates back to Ignaczak (1974); see also Hetnarski &
Ignaczak (2011); Ostoja-Starzewski (2018). Consider a semi-infinite, inhomoge-
neous, anisotropic elastic cylinder, denoted by B, having a constant cross-section,
aligned with the axis k, having the end face C0, and any intersection of B by
a plane perpendicular to k at any distance l from C0 denoted by Cl. Also, a
semi-infinite cylinder with the end face C0 is denoted by B (l). A random cylinder
is S = {B(ω);ω ∈ Ω} and, analogously, we have S(l) = {B(l, ω);ω ∈ Ω}.



4.8 Stochastic Partial Differential Equations 265

To state the principle, we consider one realisation B(ω), assume the body
forces to be absent and the initial, boundary and asymptotic conditions of the
form:

σij (x, 0) = 0, σ̇ij (x, 0) = 0 for x ∈ B (4.67)

σijnj = 0 on (∂B − C0) × [0,∞)
σijnj = pi �= 0 on C0 × [0,∞)

(4.68)

∫
Cl

σijnjda→ 0 as l → ∞ for t ≥ 0∫
Cl

εijkxj (σklnl) da→ 0 as l → ∞ for t ≥ 0

∫
Cl

ρ−1σkl,l (σ̇kjnj) da→ 0 as l → ∞ for t ≥ 0.

(4.69)

Here ni stands for the outer unit normal to the surface and pi = pi (x, t) is a pre-
scribed load. The mass density RF and compliance TRF satisfy the inequalities
(e is a symmetric, rank 2 tensor)

0 < ρmin (ω) ≤ ρ (ω,x) ≤ ρmax (ω) <∞, a.e. in B,

0 < Smin (ω) |e|2 ≤ e : S (ω,x) : e ≤ Smax (ω) |e|2 <∞, ∀e �= 0
a.e. in B.

(4.70)

Now, the Dynamic Saint-Venant’s principle (Ostoja-Starzewski 2018) assumes
that, given a stress field satisfying (1.43) with a zero body force the conditions
(4.67), (4.68), (4.69) for the total stress energy associated with the solution and
stored in the semi-infinite cylinder B (l) over the time interval [0, t]

U (l, t, ω) =
1
2

t∫
0

∫
B(l)

(
1

ρ (ω,x)
σmn,n σmp,p + σ̇ijSijkl (ω,x) σ̇kl

)
dxdτ

these estimates hold true:

U (l, t, ω) = 0 for 0 ≤ t < l
c ,

U (l, t, ω) = U (0, t) exp
(

−l
c(ω)t

)
for t > l

c ≥ 0.

Here

c (ω) =
2√

ρmin (ω) Smin (ω)
, (4.71)

At this point, we note that the random fields of mass density and compliance
are scale-dependent: the larger is the mesoscale of Figure 0.1 in the Introduction,
the weaker is the randomness. This implies that the bounds (4.70) get tighter
(and tend to coincide) as the mesoscale increases (and, respectively, tends to
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infinity) − recall the scaling function (4.59). Thus, instead of (4.71), we should
write

c (ω, δ) =
2√

ρmin (ω, δ) Smin (ω, δ)
,

As δ increases, ρmin (ω, δ) and Smin (ω, δ) increase, so that

c (ω, δ) > c (ω, δ′) for δ < δ′;

implying that the lowest estimate of c is obtained in the RVE limit (recall
Section 4.7)

lim
δ→∞

c (ω, δ) =
2√

ρeff Seff
,

where ρeff and Seff are the effective (RVE level) properties.

4.9 Damage TRF

4.9.1 Group-Theoretical Considerations

In continuum damage mechanics, damage may be described by a set D of scalars,
vectors and tensors, see a review of damage variables in (Ganczarski et al., 2010,
Table 3.1). We consider the fabric tensors introduced in Kanatani (1984); see
also Onat & Leckie (1988), Lubarda & Krajcinovic (1993), Murakami (2012),
Ganczarski et al. (2015). The idea is as follows.

Consider the spherical surface S2 of unit radius around a material point P (x),
see Ganczarski et al. (2015, Figure 1.4). Let n be the direction vector drawn
from x to a point on the sphere. Denote by ξ(n) the directional distribution
of the microvoid density. It’s a function ξ : S2 → R. Assume this function is
square-integrable with respect to the Lebesgue measure dn. Following Olive
et al. (2017), denote by H�(R3) the space of harmonic polynomials of degree � ≥ 0
on the space domain R3 (homogeneous polynomials of degree � with vanishing
Laplacian). It is well-known that the direct sum of the above spaces over � ≥ 0
is dense in the Hilbert space L2(S2,dn) of all square-integrable functions. We
choose an orthonormal basis, say the basis of real-valued spherical harmonics
{Sm� (n) : − � ≤ m ≤ � } in each space, and express the function ξ(n) as the sum
of the Fourier series

ξ(n) =
∞∑
�=0

2�∑
m=−2�

ξm2�S
m
2�(n). (4.72)

Since the magnitude of ξ(n) is unchanged under the inversion n �→ −n, we have
ξ(−n) = ξ(n); that’s why the expansion (4.72) contains only even polynomials.

It is customary in damage mechanics to use another form of the expan-
sion (4.72). For any polynomial p(x1, . . . ,x�) ∈ H�(R3), consider its polarisation,
that is, the following rank � tensor

T (x1, . . . ,x�) =
1
�!

∂�

∂t1 · · · ∂t�

∣∣∣∣
t1=···=t�=0

p(t1x1 + · · · + t�x�),
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see Olive et al. (2017). It is known that the polarisation is an isomorphism
between H�(R3) and the space H�(R3) of rank � harmonic tensors, that are
completely symmetric and completely traceless. Applying the polarisation to
(4.72), we obtain

ξ(n) = D0 +
∞∑
�=1

Di1···i2�
fi1···i2�

(n), (4.73)

where the Einstein summation convention is in use. Here, 4� + 1 independent
components of the tensor fi1···i2�

(n) are 4� + 1 polarised polynomials Sm2�(n),
−2� ≤ m ≤ 2�.

How to choose the harmonic tensors fi1···i2�
(n)? As a first candidate, consider

the tensors

{1, ni, ninj , . . . , ni1 · · ·ni� , . . . }.

They are, however, neither linearly independent nor completely traceless. For
example, the contraction of njnj over i = j gives 1. To find an irreducible tensor
basis, that is, a set of linearly independent harmonic tensors, use Kanatani (1984,
Equation 4.2):

fi1···i2�
(n) =

�∑
m=0

c�mδ(i1i2 · · · δi2m−1i2m
ni2m+1 · · ·ni2�),

where the brackets denote the symmetrisation of the indices, and where

c�m = (−1)m
(

2�
2m

)(
2�−1
m

)(
4�−1
2m

) .

For example, c10 = 1, c11 = − 1
3 , and we have fij(n) = ninj − 1

3δij . The
symmetrisation δ(ijnknl) is

δ(ijnknl) =
1
6
(δijnknl + δiknjnl + δilnjnk + δjkninl + δjlninl + δklninj),

the symmetrisation δ(ijδkl) is

δ(ijδkl) =
1
3
(δijδkl + δikδjl + δilδjk),

the coefficients are c20 = 1, c21 = − 6
7 , c22 = 3

35 , and

fijkl(n) = ninjnknl −
6
7
δ(ijnknl) +

3
35
δ(ijδkl),

and so on.
The coefficients of the expansion (4.73) are called fabric tensors. They are

calculated by

Di1···i2�
=

1
4π

(4�+ 1)!!
(2�)!

∫
S2
ξ(n)fi1···i2�

(n) dn,

see Murakami (2012, Equation (2.29)) or Ganczarski et al. (2015, Equa-
tion (1.87)).
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Recall that the directional distribution of the microvoid density depends on
the material point x. Then, Equation (4.73) takes the form:

ξ(n,x) = D0(x) +
∞∑
�=1

Di1···i2�
(x)fi1···i2�

(n).

In stochastic continuum damage mechanics, the fabric tensors D0(x),
Dij(x), . . . , Di1···i2�

(x), . . . , must be random fields.
Note that the considerations of Section 3.1 are applicable here. In particular,

under an orthogonal transformation g ∈ O(3), the point x becomes the point
gx. The tensor D(x) transforms to the tensor ρ2�(g)D(x). Then we have

〈D(gx)〉 = ρ2�(g)〈D(x)〉,
〈D(gx),D(gy)〉 = (ρ2� ⊗ ρ2�)(g)〈D(x),D(y)〉,

(4.74)

that is, the random field D(x) is (O(3), ρ2�)-isotropic.
When � = 0, the description of such a field is given by Theorems 14 and 15.

We would like to prove a similar result for the case of � ≥ 1. Note that in the case
of � = 1 such a result for the representation ρ0 ⊕ ρ2 was proved in Section 3.6
and in Malyarenko & Ostoja-Starzewski (2016b), and in the case of � = 2 such
a result for the representation 2ρ0 ⊕ 2ρ2 ⊕ ρ4 was proved in Section 3.8 and in
Malyarenko & Ostoja-Starzewski (2017b). Our case is different.

To start with, consider the first equation in (4.74). Because 〈D(x)〉 = D does
not depend on x, we have D = ρ2�(g)D for all g ∈ O(3). In other words, the
tensor D lies in the space, where the trivial representation of O(3) acts. It is
well-known that the representation ρ2� is irreducible and non-trivial when � ≥ 1.
It follows that 〈D(x)〉 = 0.

Consider the two-point correlation tensor B : R3 → H�(R3)⊗H�(R3), given by

B(x) = 〈D(0),D(x)〉.

Note that ρ1(g) = g, then

B(ρ1(g)x) = (ρ2� ⊗ ρ2�)(g)B(x).

In other words, B is a covariant tensor of the pair of representations (ρ2�⊗ρ2�, ρ1).
By the result of Wineman & Pipkin (1964), it has the form

B(x) =
M∑
m=1

fm(I1, . . . , IK)Lm(x),

where {I1, . . . , IK} is an integrity basis for polynomial invariants of the repre-
sentation ρ1, and {Lm(x) : 1 ≤ m ≤ M } is an integrity basis for polynomial
covariant tensors of the above pair.

In our case, we have K = 1 and I1 = ‖x‖2. Once again, by Weyl (1997), any
polynomial covariant of the group O(d) is a linear combination of products of
Kronecker’s deltas δij and second degree homogeneous polynomials xixj . The
tensors Lm(x) are constructed as follows. Consider the products
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xi1i2 · · ·xi2�′−1i2�′ δi2�′+1i2�′+2
· · · δi4�−1i4�

, (4.75)

where 0 ≤ �′ ≤ 2�. For a fixed �′, act on the indices of the products (4.75)
by the permutation group of order 2[(2�)!]2 generated by 2�! permutations of
symbols i1, . . . , i2�, 2�! permutations of symbols i2�+1, . . . , i4�, and transpositions
i�′ → i�′+2�. The tensors Lm(x) are the sums of the products (4.75) over the
orbits of this action. The two-point correlation tensor takes the form

B(x) =
N�∑
m=0

fm(‖x‖2)Lm(x). (4.76)

It remains to find the general form of the functions fm(‖x‖2).
Exactly as in Chapter 3, we prove that the two-point correlation tensor has

the form

B(x) =
∫ ∞

0

∫
S2

ei(p,x)h(p) dn̂ dΦ(λ), (4.77)

where p is a point in the wavenumber domain R̂3, λ = ‖p‖, n̂ = p
λ for p �= 0, dn̂

is the Lebesgue measure on the unit sphere S2 in the wavenumber domain, Φ is
a finite Borel measure on [0,∞), and h(p) is a measurable function defined on
R̂3, taking values in the convex compact set of symmetric non-negative-definite
operators in H2�(R3) with unit trace satisfying the following condition

h(gp) = S2(ρ2�(g))h(p), g ∈ O(3). (4.78)

Now we choose bases in the spaces H2�(R3), � ≥ 1. We build them inductively.
Induction base. The basis in the space H2(R3) is given by the Godunov–

Gordienko matrices:

Tni1i2 = g
n[i1,i2]
2[1,1] , −2 ≤ n ≤ 2.

Induction hypothesis. Assume that the basis {Tni1···i2�−2
: 2 − 2� ≤ n ≤

2�− 2 } is already constructed.
Induction step. The space H2�(R3) is that subspace of the tensor prod-

uct H2�−2(R3) ⊗ H2(R3) where the irreducible representation ρ2� acts. The
basis of the above space is calculated with the help of the Godunov–Gordienko
coefficients as follows.

Tni1···i2�
=

2�−2∑
n1=2−2�

2∑
n2=−2

g
n[n1,n2]
2�[2�−2,2]T

n1
i1···i2�−2

g
n2[i2�−1,i2�]
2[1,1] .

In the chosen basis, the operator h(p) becomes the matrix hij(p), −2� ≤ i, j ≤
2�, so that

h(p) =
2�∑

i,j=−2�

hij(p)T ii1···i2�
⊗ T jj1···j2�

.

The tensor product in the right-hand side expands as follows:
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T ii1···i2�
⊗ T jj1···j2�

=
2�∑
�′=0

2�′∑
m=−2�′

g
m[i,j]
2�′[2�,2�]T

m
2�′ ,

where {Tm2�′ : − 2�′ ≤ m ≤ 2� } is the Gordienko basis in the subspace of the
symmetric tensor square S2(H2�(R3)) where the irreducible representation ρ2�′

acts, see Gordienko (2002). The expansion does not contain representations with
odd indices, because they belong to the skew-symmetric part of the tensor square
H2�(R3) ⊗ H2�(R3).

The matrix entries hij(p) may be expressed as

hij(p) =
2�∑
�′=0

2�′∑
m=−2�′

g
m[i,j]
2�′[2�,2�]h

m
2�′(p), (4.79)

where the vector-valued function

h2�′(p) = (h−2�′
2�′ (p), . . . , h2�′

2�′(p))
�

satisfies the condition

h2�′(gp) = ρ2�(g)h2�′(p), g ∈ O(3), (4.80)

which follows from (4.78). The advantage of (4.80) over (4.78) is that the
representation ρ2�′ is irreducible, while the representation S2(ρ2�) is not.

Let h2�′(λ) be the value of the function h2�′(p) at the point (0, 0, λ)� ∈ R̂3 for
λ > 0. The stationary subgroup of the above point is the group O(2). It follows
from (4.80) that for all g ∈ O(2) we have

h2�′(λ) = ρ2�′(g)h2�′(λ),

that is, the vector h2�′(λ) lies in the subspace where the trivial representation of
the group O(2) acts. By the construction of the Gordienko basis, this subspace
is generated by the tensor T 0

2�′ . Then we have

h2�′(λ) = (0, . . . , h0
2�′(λ), 0, . . . , 0)�.

By (4.80), we have

h2�′(p) = ρ2�′(g)h2�′(λ),

where g is an arbitrary element of the group O(3) satisfying g(0, 0, λ)� = p. In
coordinates, we obtain

hm2�′(p) = ρ2�′g
m0 (n̂)h0

2�′(λ).

Equation 4.79 takes the form:

hij(p) =
2�∑
�′=0

2�′∑
m=−2�′

g
m[i,j]
2�′[2�,2�]ρ

2�′g
m0 (n̂)h0

2�′(λ), p �= 0.

The matrix entries ρ2�′g
m0 (n̂) are proportional to the real-valued spherical

harmonics:
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ρ2�′
m0(n̂) =

√
4�′ + 1
2
√
π

Sm2�′(n̂).

Finally,

hij(p) =
1

2
√
π

2�∑
�′=0

√
4�′ + 1

2�′∑
m=−2�′

g
m[i,j]
2�′[2�,2�]S

m
2�′(n̂)h0

2�′(λ).

In particular, for a point p = (0, 0, λ)� we have

hij(λ) =
2�∑
�′=0

g
0[i,j]
2�′[2�,2�]h

0
2�′(λ).

Note that the matrices g0
2�′[2�,2�] = g

0[i,j]
2�′[2�,2�] are diagonal. Moreover, we have

g
0[−k,−k]
2�′[2�,2�] = g

0[k,k]
2�′[2�,2�]. Denote

ũk(λ) =
2�∑
�′=0

g
0[k,k]
2�′[2�,2�]h

0
2�′(λ), (4.81)

then we have ũ−k′(λ) = ũ′ik(λ). The matrix hij(λ) is non-negative-definite and
has unit trace if and only if

uk(λ) ≥ 0,
2�∑
i=0

uk(λ) = 1, (4.82)

where u0(λ) = ũ0(λ), uk(λ) = 2ũk(λ) for 1 ≤ k ≤ 2�. Geometrically, the function
hij(λ) takes values in the simplex C0 with 2�+ 1 vertices. The zeroth vertex h0

is the matrix with the only non-zero element h0
00 = 1. The kth vertex hk is the

matrix with only non-zero elements hk−k−k = hkkk = 1
2 , 1 ≤ k ≤ 2�. The functions

uk(λ) are the barycentric coordinates of the point hij(λ) inside the simplex C0.
What happens when λ = 0? This time, the stationary subgroup of the point

0 is the whole of O(3). It follows from (4.80) that for all g ∈ O(3) we have

h2�′(0) = ρ2�′(g)h2�′(0),

that is, the vector h2�′(0) lies in the subspace where the trivial representation
of the group O(3) acts. The only trivial representation among ρ2�′ is ρ0. Then
h2�′(0) = 0 whenever �′ > 0. Equation 4.79 takes the form:

hij(0) = g
0[i,j]
0[2�,2�]h

0
0(0) =

1√
4�+ 1

δijh
0
0(0).

This matrix has unit trace if and only if h0
0(0) = 1√

4�+1
. Then, hij(0) = 1

4�+1δij .
The barycentric coordinates of the point hij(0) inside the simplex C0 are

u0(0) =
1

4�+ 1
, uk(0) =

2
4�+ 1

, 1 ≤ k ≤ 2�. (4.83)
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Inverting Equation 4.81, we obtain

h0
2�′(λ) =

2�∑
k=0

ak�′uk(λ),

where uk(λ) are measurable functions satisfying (4.82) when λ > 0 and (4.83)
when λ = 0. Equation 4.77 takes the form:

Bij(x) =
1

2
√
π

2�∑
k=0

∫ ∞

0

∫
S2

ei(p,x)
2�∑
�′=0

√
4�′ + 1ak�′

×
2�′∑

m=−2�′
g
m[i,j]
2�′[2�,2�]S

m
2�′(n̂) dn̂uk(λ) dΦ(λ).

(4.84)

As usual, to calculate the inner integral, use the Rayleigh expansion (2.62). We
obtain

Bij(x) = 2
√
π

2�∑
k=0

∫ ∞

0

2�∑
�′=0

(−1)�
′√

4�′ + 1ak�′j2�′(λr)

×
2�′∑

m=−2�′
g
m[i,j]
2�′[2�,2�]S

m
2�′(n) dΦk(λ),

(4.85)

where dΦk(λ) = uk(λ) dΦ(λ). Equation 4.83 means that

Φ0({0}) = 2Φk({0}), 1 ≤ k ≤ 2�, (4.86)

otherwise Φk are arbitrary finite Borel measures.
Rewrite Equation (4.85) as

B(x) = 4π
2�∑
k=0

∫ ∞

0

2�∑
�′=0

(−1)�
′
ak�′j2�′(λr)M

�′(n) dΦk(λ), (4.87)

where M�′(n) are the M -functions:

M�′(n) =
2�∑

i,j=−2�

2�′∑
m=−2�′

g
m[i,j]
2�′[2�,2�]U

2�′
m0(n)T i ⊗ T j .

We know that the M -functions are linear combinations of the elements of the
covariant tensors:

M�′
i1···i4�

(n) =
N�∑
m′=0

b�′m′Lm
′
(n).

The two-point correlation tensor of the random field D(x) indeed has the form
(4.76) with

fm′(r) = 4π
2�∑
k=0

∫ ∞

0

2�∑
�′=0

(−1)�
′
ak�′b�′m′j2�′(λr) dΦk(λ).
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To find the spectral expansion of the random field D(x), we write Equa-
tion (4.84) in the form

Bij(y − x) =
1

2
√
π

2�∑
k=0

∫ ∞

0

∫
S2

ei(p,y)ei(p,x)

2�∑
�′=0

√
4�′ + 1ak�′

×
2�′∑

m=−2�′
g
m[i,j]
2�′[2�,2�]S

m
2�′(n̂) dn̂ dΦk(λ),

and expand the two plane waves ei(p,y) and ei(p,x) into spherical harmonics
separately. To simplify the result, use the Gaunt integral (2.36). We obtain

Bij(y − x) = 4π
2�∑
k=0

∫ ∞

0

2�∑
�′=0

ak�′

2�′∑
m=−2�′

g
m[i,j]
2�′[2�,2�]

∞∑
�1,�2=0

i�1−�2

×
√

(2�1 + 1)(2�2 + 1)j�1(λ‖y|)j�2(λ‖x|)g
0[0,0]
2�′[�1,�2]

×
�1∑

m1=−�1

�2∑
m2=−�2

Sm1
�1

(ny)Sm2
�2

(nx)gm[m1,m2]
2�′[�1,�2]

dΦk(λ).

Applying Karhunen’s theorem, we obtain the desired spectral expansion:

Di1···i2�
(r,n) = 2

√
π

2�∑
i=−2�

2�∑
k=0

∞∑
�=0

�∑
m=−�

Sm� (n)

×
∫ ∞

0

j�(λr) dZimk� (λ)T ii1···i2�
,

(4.88)

where Zimk� (λ) are centred orthogonal stochastic measures on [0,∞) with

E[Zim1
k1�1

(A)Zjm2
k2�2

(B)] = δk1k2 i
�1−�2

√
(2�1 + 1)(2�2 + 1)

×
2�∑
�′=0

2�′∑
n=−2�′

ak1�′ g
0[0,0]
2�′[�1,�2]

g
n[i,j]
2�′[2�,2�]

× g
n[m1,m2]
2�′[�1,�2]

Φk1(A ∩B)

(4.89)

for all Borel subsets A and B of the set [0,∞).

Theorem 39. Formula

B(x) = 4π
2�∑
k=0

∫ ∞

0

2�∑
�′=0

(−1)�
′
ak�′j2�′(λr)

N�∑
m′=0

b�′m′Lm
′
(n) dΦk(λ)

establishes a one-to-one correspondence between the set of two-point correlation
functions of homogeneous and isotropic H�(R3)-valued random fields on the space
R3 and the sets of finite Borel measures Φk on [0,∞) satisfying (4.86). The field
has the form (4.88)–(4.89).
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Example 24 (� = 1). The symmetric tensor square S2(ρ2) is isomorphic to the
direct sum ρ0 ⊕ ρ2 ⊕ ρ4. The isomorphism is given by the Godunov–Gordienko
coefficients. The O(2)-invariant vector in the space of the representation ρ0 has
coefficients g0[i,i]

0[2,2] = 1√
5
, −2 ≤ i ≤ 2. The O(2)-invariant vector in the space of the

representation ρ2 has coefficients g0[0,0]
2[2,2] =

√
2√
7
, g0[±1,±1]

2[2,2] = 1√
14

and g
0[±2,±2]
2[2,2] =

−
√

2√
7
. Finally, the O(2)-invariant vector in the space of the representation ρ4 has

coefficients g0[0,0]
4[2,2] = 3

√
2√

35
, g0[±1,±1]

4[2,2] = − 2
√

2√
35

and g0[±2,±2]
4[2,2] = 1√

70
. The above coef-

ficients have been calculated using the algorithm described in Selivanova (2014).
The barycentric coordinates of a point inside the simplex take the form

u0(λ) =
1√
5
h0

0(λ) +
√

2√
7
h0

2(λ) +
3
√

2√
35
h0

4(λ),

u1(λ) =
2√
5
h0

0(λ) +
√

2√
7
h0

2(λ) − 4
√

2√
35
h0

4(λ),

u2(λ) =
2√
5
h0

0(λ) − 2
√

2√
7
h0

2(λ) +
√

2√
35
h0

4(λ).

The functions h0
2�′(λ) are as follows.

h0
0(λ) =

1√
5
u0(λ) +

1√
5
u1(λ) +

1√
5
u2(λ),

h0
2(λ) =

2√
7
u0(λ) +

1√
14
u1(λ) −

√
2√
7
u2(λ),

h0
4(λ) =

3
√

2√
35
u0(λ) − 2

√
2√

35
u1(λ) +

1√
70
u2(λ).

Equation (4.87) takes the form

B(x) =
4π√

5

∫ ∞

0

[j0(λr)M0(n) − j2(λr)M1(n) + j4(λr)M2(n)] dΦ0(λ)

+
2
√

2π√
7

∫ ∞

0

[2j0(λr)M0(n) − j2(λr)M1(n) − 2j4(λr)M2(n)] dΦ1(λ)

+
2
√

2π√
35

∫ ∞

0

[6j0(λr)M0(n) + 4j2(λr)M1(n) + j4(λr)M2(n)] dΦ2(λ),

(4.90)
where

M�′
ijkl(n) =

2∑
n,p=−2

2�′∑
m=−2�′

g
m[n,p]
2�′[2,2]g

n[i,j]
2[1,1]g

p[k,l]
2[1,1]ρ

2�′
m0(n).

The tensors Lm
′

ijkl(n) are given by (2.39), (2.42) and (2.43). The coefficients
b�′m′ were calculated in (3.81). Substituting this formulae in (4.90), we obtain

B(x) =
2∑
�=0

∫ ∞

0

5∑
m=1

2∑
n=0

c�mnj2n(λr)Lm(n) dΦ�(λ),
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where the coefficients c�mn are easily calculated, for example, c010 = − 4π
15 ,

c011 = − 8
√

2π
3
√

35
, and so on. Equation 4.88 takes the form

Dij(r,n) = 2
√
π

2∑
n=−2

2∑
k=0

∞∑
�=0

�∑
m=−�

Sm� (n)
∫ ∞

0

j�(λr) dZnmk� (λ)gn[i,j]
2[1,1].

Example 25 (� = 2). This time we have

u0(λ) =
1
3
h0

0(λ) +
10

3
√

77
h0

2(λ) +
9
√

2√
1001

h0
4(λ) +

2
√

5
3
√

11
h0

6(λ) +
7
√

10
3
√

143
h0

8(λ),

u1(λ) =
2
3
h0

0(λ) +
17

3
√

77
h0

2(λ) +
9
√

2√
1001

h0
4(λ) − 1

3
√

55
h0

6(λ) − 56
√

2
3
√

715
h0

8(λ),

u2(λ) =
2
3
h0

0(λ) +
8

3
√

77
h0

2(λ) −
√

22√
91
h0

4(λ) − 2
√

11
3
√

5
h0

6(λ) +
28
√

2
3
√

715
h0

8(λ),

u3(λ) =
2
3
h0

0(λ) −
√

7
3
√

11
h0

2(λ) − 3
√

14√
143

h0
4(λ) +

17
3
√

55
h0

6(λ) − 8
√

2
3
√

715
h0

8(λ),

u4(λ) =
2
3
h0

0(λ) − 4
√

7
3
√

11
h0

2(λ) +
2
√

14√
143

h0
4(λ) − 4

3
√

55
h0

6(λ) +
√

2
3
√

715
h0

8(λ).

The functions h0
2�′(λ) are as follows.

h0
0(λ) =

1
3
[u0(λ) + u1(λ) + u2(λ) + u3(λ) + u4(λ)],

h0
2(λ) =

1
6
√

77
[20u0(λ) + 17u1(λ) + 8u2(λ) − 7u3(λ) − 28u4(λ)],

h0
4(λ) =

1√
2002

[18u0(λ) + 9u1(λ) − 11u2(λ) − 21u3(λ) + 14u4(λ)],

h0
6(λ) =

1
6
√

55
[20u0(λ) − u1(λ) − 22u2(λ) + 17u3(λ) − 4u4(λ)],

h0
8(λ) =

1
3
√

1430
[70u0(λ) − 56u1(λ) − 28u2(λ) − 8u3(λ) + u4(λ)].

Equation (4.87) takes the form

B(x) =
4π
3

∫ ∞

0

[j0(λr)M0(n) − j2(λr)M1(n) + j4(λr)M2(n)

− j6(λr)M3(n) + j8(λr)M4(n)] dΦ0(λ)

+
2π

3
√

77

∫ ∞

0

[20j0(λr)M0(n) − 17j2(λ)M1(n)

+ 8j4(λr)M2(n) + 7j6(λr)M3(n) − 28j8(λr)M4(n)] dΦ1(λ)

+
2
√

2π√
1001

∫ ∞

0

[18j0(λr)M0(n) − 9j2(λ)M1(n)

− 11j4(λr)M2(n) + 21j6(λr)M3(n) + 14j8(λr)M4(n)] dΦ2(λ)
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+
2π

3
√

55

∫ ∞

0

[20j0(λr)M0(n) + j2(λ)M1(n)

− 22j4(λr)M2(n) − 17j6(λr)M3(n) − 4j8(λr)M4(n)] dΦ3(λ)

+
2
√

2π
3
√

715

∫ ∞

0

[70j0(λr)M0(n) + 56j2(λ)M1(n)

− 28j4(λr)M2(n) + 8j6(λr)M3(n) + j8(λr)M4(n)] dΦ4(λ),

where

M�′
ijkli′j′k′l′(n) =

4∑
m,n=−4

2�′∑
q=−2�′

g
q[m,n]
2�′[4,4]T

m
ijklT

n
i′j′k′l′ρ

2�′
q0 (n),

and where the tensors Tmijkl are calculated by the induction step above as

Tmijkl =
2∑

n,q=−2

g
m[n,q]
4[2,2] g

n[i,j]
2[1,1]g

q[l,m]
2[1,1] .

The N2 = 29 functions Lijkli′j′k′l′ can be found in Section 2.7. The coefficients
b�′m′ can be found in the complete version by Malyarenko & Ostoja-Starzewski
(2016a) of the paper by Malyarenko & Ostoja-Starzewski (2017b).

4.9.2 Damage Tensor

With reference to Chapter 1, recall that anisotropic damage requires damage
tensors of rank 2 and higher. Consider Dij of (1.73) which is symmetric by
definition. Its correlation function

Dklij = E [Dij(z + z1)Dkl(z1)] , (4.91)

in the case of statistically isotropic damage has the representation (3.63).
To determine all the Ams, without loss of generality, we may take the unit

vector n = (n1 = 1, n2 = 0, n3 = 0) co-aligned with z, so that the following auto-
and cross-correlations (consecutively named Mi, i = 1, . . . , 7) result

M1 = 〈T11(0)T11(z)〉 = S1(z) + 2S2(z) + 2S3(z) + 4S4(z) + S5(z)

M2 = 〈T22(0)T22(z)〉 = S1(z) + 2S2(z)

M3 = 〈T11(0)T22(z)〉 = S1(z) + S3(z)

M4 = 〈T22(0)T33(z)〉 = S1(z)

M5 = 〈T12(0)T12(z)〉 = S2(z) + S4(z)

M6 = 〈T23(0)T23(z)〉 = S2(z)

M7 = 〈T11(0)T12(z)〉 = 0. (4.92)

While the last result shows that the cross-correlation between the 11- and 12-
components is always zero, we note that M2 = M4 + 2M6 must hold, so that
only five Mis are independent, just as we have five functions Sα, α = 1, . . . , 5. In
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principle, we can determine these five correlations for a specific physical situation.
Thus, when Tij is the damage tensor for a given resolution (on a given mesoscale)
in a coordinate system defined by n, we can use micromechanics or experi-
ments to determine the best fits of Mis. Thus, we have a following strategy for
determination of the correlation structure Dkl

ij :

1. Measure Mi, i = 1, . . . , 6.
2. Determine S1 = M4 and S2 = M6.
3. Determine S3 = M3 −M4 and S4 = M5 −M6.
4. Determine S5 = M1 −M3 − 4M5 + 2M6.

4.10 Fractal Planetary Rings: Energy Inequalities and
Random Field Model

A recent study of the photographs of Saturn’s rings taken during the Cassini
mission has demonstrated their fractal structure; see Li & Ostoja-Starzewski
(2015). This leads us to ask these questions:

Q1: What mechanics argument in support of such a fractal structure of
planetary rings is possible?

Q2: What kinematics model of such fractal rings can be formulated?
These issues are approached from the standpoint of rings’ spatial structure

having (i) statistical stationarity in time and (ii) statistical isotropy in space,
but (iii) statistical non-stationarity in space. The reason for (i) is an extremely
slow decay of rings relative to the timescale of orbiting around a planet such
as Saturn. The reason for (ii) is the obviously circular, albeit disordered and
fractal, pattern of rings in the radial coordinate. The reason for (iii) is the lack
of invariance with respect to arbitrary shifts in Cartesian space which, on the
contrary and for example, holds true for a basic model of turbulent velocity fields.
Hence, the model we develop is one of rotational fields of all the particles, each
travelling in its circular orbit whose radius is dictated by basic orbital mechanics.

The Q1 issue is approached in (Malyarenko & Ostoja-Starzewski, 2017a) by
taking rings as self-generated circular structures of non-integer dimensional mass
distribution. The approach is based on concepts developed in Tarasov (2005) and
Tarasov (2006), while noting that, in inelastic collisions, the total momentum is
conserved but the total kinetic energy is not. By comparing total energies of
two rings – one of a non-fractal (called ‘Euclidean’) structure and another of
a fractal structure, both carrying the same mass – we infer that the fractal
ring is more likely to occur. We also compare their angular momenta, which
leads to a consideration of a random, micropolar-type field of particles in the
rings. It is important to note that mathematical modelling of fractal structures
encountered in physics has evolved from those with fractal mass dimensions to
those in fractal dimensional spaces. Key references in the latter area are Tarasov
(2014) and Tarasov (2015). The first of these papers contains a short review of
several different methods that describe fractal media and the differences between
them.
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The Q2 issue is approached in the following way. Assume that the angular
velocity vector of a rotating particle is a single realisation of a random field.
Mathematically, the above field is a random section of a special vector bundle.
Using the theory of group representations, we prove that such a field is completely
determined by a sequence of continuous positive-definite matrix-valued functions
{Bk(r, s) : k ≥ 0} with

∞∑
k=0

tr(Bk(r, r)) <∞,

where the real-valued parameters r and s run over the radial cross-section F of
a planet’s rings. To reflect the observed fractal nature of Saturn’s rings, Avron
& Simon (1981) and independently Mandelbrot (1982) supposed that the set F
is a fat fractal subset of the set R of real numbers. The set F itself is not a
fractal, because its Hausdorff dimension is equal to 1. However, the topological
boundary ∂F of the set F , that is, the set of points x0 such that an arbitrarily
small interval (x0 − ε, x0 + ε) intersects with both F and its complement, R \F ,
is a fractal. The Hausdorff dimension of ∂F is not an integer number.

4.10.1 A Stochastic Model of Kinematics

First, we consider the particles in planet’s rings at a time instant 0.
Instead of the cylindrical coordinate system, introduce the spherical coordinate

system (r, ϕ, θ) with origin O in the centre of the planet such that the plane of
planetary rings corresponds to the polar angle’s value θ = π/2. Let ω(r, ϕ) ∈ R3

be the angular velocity vector of a rotating particle located at (r, ϕ). We assume
that ω(r, ϕ) is a single realisation of a random field.

To explain the exact meaning of this construction, we proceed as follows. Let
(x, y, z) be a Cartesian coordinate system with origin in the planet’s centre such
that the plane of planetary rings corresponds to the xy-plane, Figure 4.5. Put
G = O(2) × SO(2), K = O(2). The homogeneous space C = G/K = SO(2) can
be identified with a circle, the trajectory of a particle inside rings.

The topological space R = R2 \ {0} is the union of circles Cr of radii r > 0.
Every circle determines the vector bundle ξr = (EUr, πr, Cr). Consider the vector
bundle η = (E, π,R), where E is the union of all EUr, and the restriction of the
projection map π to EUr is equal to πr. The random field ω(r, ϕ) is a random
section of the above bundle, that is, ω(r, ϕ) ∈ π−1(r, ϕ) = R3. In what follows
we assume that the random field ω(r, ϕ) is second-order, i.e. E[‖ω(r, ϕ)‖2] < ∞
for all (r, ϕ) ∈ R.

In what follows, we will use the approach by Malyarenko (2011) to the con-
struction of random sections of vector bundles. It is based on the following fact:
the vector bundle η = (E, π,R) is homogeneous or equivariant. In other words,
the action of the group O(2) on the bundle base R induces the action of O(2)
on the total space E by (g0,x) �→ (gg0,x). This action identifies the spaces
π−1(r0, ϕ) for all ϕ ∈ [0, 2π), while the action of the multiplicative group R+



4.10 Fractal Planetary Rings 279

Figure 4.5 The planar ring of particles adapted from Figure 5(b) in Li &
Ostoja-Starzewski (2015), showing the Saturnian (Cartesian and cylindrical)
coordinate systems as well as the orbital frame of reference (a1, a2, a3) and
the body axes (x1, x2, x3) of a typical particle.

on R, λ(r, ϕ) = (λr, ϕ), λ > 0, identifies the spaces π−1(r, ϕ0) for all r > 0. We
suppose that the random field ω(r, ϕ) is mean-square continuous, i.e.

lim
‖x−x0‖→0

E[‖ω(x) − ω(x0))‖2] = 0

for all x0 ∈ R.
Let 〈ω(x)〉 = E[ω(x)] be the one-point correlation vector of the random field

ω(x). On the one hand, under rotation and/or reflection g ∈ O(2) the point x
becomes the point gx. Evidently, the axial vector ω(x) transforms according to
the representation

g =
(
g11 g12
g21 g22

)
�→ ρ(g) =

⎛⎝g11 g12 0
g21 g22 0
0 0 det g

⎞⎠
and becomes ρ(g)ω(gx). The one-point correlation vector of the so transformed
random field remains the same, i.e.

〈ω(gx)〉 = ρ(g)〈ω(x)〉.

On the other hand, the one-point correlation vector of the random field ω(r, ϕ)
should be independent upon an arbitrary choice of the x- and y-axes of the
Cartesian coordinate systems, i.e. it should not depend on ϕ. Then we have

〈ω(x)〉 = U(g)〈ω(x)〉

for all g ∈ O(2), i.e. 〈ω(x)〉 belongs to the subspace of R3 where the trivial
component of U acts. Then we obtain 〈ω(x)〉 = 0, because ρ does not contain
trivial components.
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Similarly, let 〈ω(x),ω(y)〉 = E[ω(x) ⊗ ω(y)] be the two-point correlation
tensor of the random field ω(x). Under the action of O(2) we should have

〈ω(gx),ω(gy)〉 = (ρ⊗ ρ)(g)〈ω(x),ω(y)〉.

In other words, the random field ω(x) is wide-sense isotropic with respect to the
group O(2) and its representation ρ.

Consider the restriction of the field ω(x) to the circle Cr, r > 0. The spectral
expansion of the field {ω(r, ϕ) : ϕ ∈ Cr } can be calculated using Malyarenko
(2011, Theorem 2) or Malyarenko (2013, Theorem 2.28).

The representation ρ is the direct sum of the two irreducible representations
λ−(g) = det g and λ1(g) = g. The vector bundle η is the direct sum of the
vector bundles η− and η1, where the bundle η− (resp. η1) is generated by the
representation λ− (resp. λ1). Let μ0 be the trivial representation of the group
SO(2), and let μk be the representation

μk(ϕ) =
(

cos(kϕ) sin(kϕ)
− sin(kϕ) cos(kϕ)

)
.

The representations λ−⊗μk, k ≥ 0 are all irreducible orthogonal representations
of the group G = O(2) × SO(2) that contain λ− after restriction to O(2). The
representations λ1 ⊗ μk, k ≥ 0 are all irreducible orthogonal representations of
the group G = O(2)×SO(2) that contain λ1 after restriction to O(2). The matrix
entries of μ0 and of the second column of μk form an orthogonal basis in the
Hilbert space L2(SO(2),dϕ). Their multiples

ek(ϕ) =

⎧⎪⎪⎨⎪⎪⎩
1√
2π
, if k = 0,

1√
π

cos(kϕ), if k ≤ −1,
1√
π

sin(kϕ), if k ≥ 1

form an orthonormal basis of the above space. Then we have

ω(r, ϕ) =
∞∑

k=−∞
ek(ϕ)Zk(r), (4.93)

where {Zk(r) : k ∈ Z } is a sequence of centred stochastic processes with

E[Zk(r) ⊗Zl(r)] = δklB
(k)(r),

∑
k∈Z

tr(B(k)(r)) <∞.

It follows that

Zk(r) =
∫ 2π

0

ω(r, ϕ)ek(ϕ) dϕ.

Then we have

E[Zk(r) ⊗Zl(s)] =
∫ 2π

0

∫ 2π

0

E[ω(r, ϕ1) ⊗ ω(s, ϕ2)]ek(ϕ1) dϕ1el(ϕ2) dϕ2.

(4.94)
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The field is isotropic and mean-square continuous, therefore

E[ω(r, ϕ1) ⊗ ω(s, ϕ2)] = B(r, s, cos(ϕ1 − ϕ2))

is a continuous function. Note that ek(ϕ) are spherical harmonics of degree |k|.
Denote by x · y the standard inner product in the space Rd, and by dω(y) the
Lebesgue measure on the unit sphere Sd−1 = {x ∈ Rd : ‖x‖ = 1 }. Then∫

Sd−1
dω(x) = ωd =

2πd/2

Γ (d/2)
,

where Γ is the Gamma function.
Now we use the Funk–Hecke theorem, see Andrews, Askey & Roy (1999). For

any continuous function f on the interval [−1, 1] and for any spherical harmonic
Sk(y) of degree k we have∫

Sd−1
f(x · y)Sk(x) dω(x) = λkSk(y),

where

λk = ωd−1

∫ 1

−1

f(u)
C

(d−2)/2
k (u)

C
(d−2)/2
k (1)

(1 − u2)(d−3)/2 du,

d ≥ 3, and C
(d−2)/2
k (u) are Gegenbauer polynomials. To see how this theorem

looks like when d = 2, we perform a limit transition as d ↓ 2. By Andrews et al.
(1999, Equation (6.4.13′)),

lim
λ→0

Cλk (u)
Cλk (1)

= Tk(u),

where Tk(u) are Chebyshev polynomials of the first kind. We have ω1 = 2, x · y
becomes cos(ϕ1 − ϕ2), and dω(x) becomes dϕ1. We obtain∫ 2π

0

B(r, s, cos(ϕ1 − ϕ2))ek(ϕ1) dϕ1 = B(k)(r, s)ek(ϕ2),

where

B(k)(r, s) = 2
∫ 1

−1

B(r, s, u)T|k|(u)(1 − u2)−1/2 du.

Equation (4.94) becomes

E[Zk(r) ⊗Zl(s)] =
∫ 2π

0

B(k)(r, s)ek(ϕ2)el(ϕ2) dϕ2 = δklB
(k)(r, s).

In particular, if k �= l, then the processes Zk(r) and Zl(r) are uncorrelated.
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Calculate the two-point correlation tensor of the random field ω(r, ϕ). We have

E[ω(r, ϕ1) ⊗ ω(s, ϕ2)] =
∞∑

k=−∞
ek(ϕ1)ek(ϕ2)B(k)(r, s)

=
1
2π
B(0)(r, s) +

1
π

∞∑
k=1

cos(k(ϕ1 − ϕ2))B(k)(r, s).

(4.95)

Now we add a time coordinate, t, to our considerations. A particle located at
(r, ϕ) at time moment t, was located at (r, ϕ − μt/r3/2) at time moment 0. It
follows that

ω(t, r, ϕ) = ω

(
r, ϕ− μt

r3/2

)
.

Equation (4.93) gives

ω(t, r, ϕ) =
∞∑

k=−∞
ek

(
ϕ− μt

r3/2

)
Zk(r), (4.96)

while Equation (4.95) gives

E[ω(t1, r, ϕ1) ⊗ ω(t2, s, ϕ2)] =
1
2π
B(0)(r, s)

+
1
π

∞∑
k=1

cos
(
k

(
ϕ1−ϕ2−

μ(t1−t2)
r3/2

))
B(k)(r, s).

Conversely, let {B(k)(r, s) : k ≥ 0 } be a sequence of continuous positive-
definite matrix-valued functions with

∞∑
k=0

tr(B(k)(r, r)) <∞, r ≥ 0, (4.97)

and let {Zk(r) : k ∈ Z } be a sequence of uncorrelated centred stochastic
processes with

E[Zk(r) ⊗Zl(s)] = δklB
(|k|)(r, s).

The random field (4.96) may describe rotating particles inside planetary rings, if
all the functions B(k)(r, s) are equal to 0 outside the rectangle [R0, R1]2, where
R0 (resp. R1) is the inner (resp. outer) radius of planetary rings.

To make our model more realistic, we assume that all the functions B(k)(r, s)
are equal to 0 outside the Cartesian square F 2, where F is a fat fractal subset
of the interval [R0, R1]; see Umberger & Farmer (1985). Mandelbrot (1982) calls
these sets dusts of positive measure. Such a set has a positive Lebesgue measure,
its Hausdorff dimension is equal to 1, but the Hausdorff dimension of its boundary
is not an integer number.

A classical example of a fat fractal is a ε-Cantor set ; see Aliprantis & Burkin-
shaw (1998). Fix ε ∈ (0, 1) and define A0 = [0, 1]. In the first step, remove an
open interval of length 2−1(1−ε) from the centre of A0 and denote the remaining
set by A1. The set A1 consists of two disjoint closed intervals of the same length.
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After n steps, we construct the set An: the union of 2n disjoint close intervals
all of the same length. In the (n+1)th step, we delete an open interval of length
2−2n−1(1 − ε) from the centre of each interval, and denote the remaining set by
An+1. The ε-Cantor set is Cε = ∩∞

n=0An. It is closed, nowhere dense in [0, 1],
and its Lebesgue measure is equal to ε.

To construct an example, consider an arbitrary sequence of continuous
positive-definite matrix-valued functions {B(k)(r, s) : k ≥ 0 } satisfying (4.97)
of the following form:

B(k)(r, s) =
∑
i∈Ik

fik(r)f�
ik(s),

where fik(r) : [R0, R1] → R3 are continuous functions, satisfying the following
condition: for each r ∈ [R0, R1] the set Ikr = { i ∈ Ik : fi(r) �= 0 } is as most
countable and the series ∑

i∈Ikr

‖fi(r)‖2

converges. The so defined function is obviously positive-definite. Put

B̃(k)(r, s) =
∑
i∈Ik

f̃ik(r)f̃�
ik(s), r, s ∈ F.

The functions B̃(k)(r, s) are the restrictions of positive-definite functions
B(k)(r, s) to F 2 and are positive-definite themselves. Consider the centred
stochastic process { Z̃k(r) : r ∈ F } with

E[Z̃k(r) ⊗ Z̃l(s)] = δklB̃
(|k|)(r, s), r, s ∈ F.

Condition (4.97) guarantees the mean-square convergence of the series

ω(t, r, ϕ) =
∞∑

k=−∞
ek

(
ϕ−

√
GMt

r3/2

)
Z̃k(r)

for all t ≥ 0, r ∈ F and ϕ ∈ [0, 2π].

4.11 Future Avenues

4.11.1 Quasi-Isotropic Random Fields

Consider a centred scalar-valued homogeneous random field τ(x), x ∈ Rd with

E[τ(x)τ(0)] = R(x).

Let ρ0 be the one-dimensional trivial representation of the group O(d). It is easy
to see that the field τ(x) is (O(d), ρ0)-isotropic if and only if ‖x‖ = ‖y‖ implies
R(x) = R(y). Szczepankiewicz (1985) proposed the following extension of the
classical definition of an isotropic random field.

Let T : Rd → Rd be a differentiable map with non-zero Jacobian.
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Definition 7. A random field τ(x) is called quasi-isotropic if ‖x‖ = ‖T (y)‖
implies R(x) = R(y).

Szczepankiewicz (1985 Claim 7.3) states that the two-point correlation
function of a homogeneous and quasi-isotropic random field τ(x) has the form

R(y) = 2(d−2)/2Γ (d/2)
∫ ∞

0

J(d−2)/2(λ‖T−1(y)‖)
(λ‖T−1(y)‖)(d−2)/2

dΦ(λ).

A possible generalisation of the above definition can be as follows. Let T (x)
be a centred homogeneous and (G, ρ)-isotropic random field with the two-point
correlation tensor 〈T (x),T (0)〉. A centred homogeneous random field S(x) is
called quasi-isotropic if its two-point correlation tensor has the form

〈S(x),S(0)〉 = 〈T (T−1(x)),T (0)〉.

It may be interesting to explore such fields.

4.11.2 Acoustic Tensor-Valued Random Fields

Let C : R3 → S2(S2(R3)) be the elasticity tensor. In a coordinate form, we have
C(x) = Cijkl(x), x ∈ R3.

Let S2 be the centred unit sphere in R3, and let n ∈ S2 be a vector of length 1.
The acoustic tensor is defined as

Aik(x,n) = Cijkl(x)njnl, (4.98)

where we use Einstein summation convention.
Let [Gm], 1 ≤ m ≤ 8, be one of the symmetry classes of elasticity tensors, and

let Vm be the corresponding fixed point set. Choose a group G lying between
Gm and its normaliser N(Gm). The linear space Vm is an invariant subspace of
the representation g �→ S2(S2(g)) of the group G. Denote by ρ the restriction of
the above representation to Vm.

Assume that C(x) is a second-order mean-square continuous homogeneous
and (G,U)-isotropic random field taking values in Vm. Then Aik(x,n) is also
a random field. Our task is to find the general form of the one- and two-point
correlation tensors of the random field Aik(x,n) as well as its spectral expansion
in terms of stochastic integrals.

Example 26. Consider the random field described in Theorem 35. That is:
G = D8 × Zc2, ρ(g) = 5A1g ⊕A2g. Combining (3.96) and (4.98), we obtain

Aik(x,n)=
5∑

m=1

CmT̃
m
ijklnjnl +

6∑
m=1

32∑
n=1

∫
(R̂3/D8×Zc

2)3,4,6,7

un(p,x) dZ0n
m (p)T̃mijklnjnl

+
6∑

m=1

32∑
n=1

∫
(R̂3/D8×Zc

2)0−2,5

un(p,x) dZ1n
m (p)T̃mijklnjnl.
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It remains to calculate the matrix entries Bmik(n) = T̃mijklnjnl. Straight-

forward calculations give: B1(n) =
(

0 0 0
0 n2

3 0
0 0 0

)
, B2(n) = 1

2

(
n2

1 0 n1n2
0 0 0

n2n1 0 n2
2

)
,

B3(n) = 1
2

(
0 n1n3 0

n3n1 0 n3n2
0 n2n3 0

)
, B4(n) = 1

2
√

2

(
n2

3 n3n1 0

n1n3 n
2
1+n

2
2 n2n3

0 n3n2 n2
3

)
, B5(n) =

1
2
√

2

(
n2

1+n
2
2 0 0

0 0 0
0 0 n2

1+n
2
1

)
and B6(n) = 1

2
√

2

(
n2

2−n2
1 0 2n1n2

0 0 0
2n2n1 0 n2

1−n2
2

)
.

The one-point correlation tensor of the random field A(x,n) becomes

〈A(x,n)〉 =
5∑

m=1

CmB
m(n),

while its two-point correlation tensor is

〈A(x,n1), A(y,n2)〉 =
6∑

i,j=1

∫
(R̂3/D8×Zc

2)3,4,6,7

(j+(p,y − x)(f+
0 )ij(p)

+ j−(p,y − x)(f−0 )ij(p)) dΦ(p)Bi(n1) ⊗Bj(n2)

+
6∑

i,j=1

∫
(R̂3/D8×Zc

2)0−2,5

(j+(p,y − x)

+ j−(p,y − x))(f1)ij(p)) dΦ(p)Bi(n1) ⊗Bj(n2).

Similar results may be easily obtained for the case of other symmetry classes.

4.11.3 Variogram of TRF

Define the variogram of a rank 1 TRF (T = eiTi) as the variance of the difference
between field Ti (x) and Tj (y) values at two locations:

2γ (x,y) ≡ 2eiejγij (x,y) := Var (eiTi (x) − ejTj (y))

=
〈
[(eiTi (x) − 〈eiTi (x)〉) (ejTj (y) − ej 〈Tj (y)〉)]2

〉
which is twice the semivariogram γij (x,y). It is a rank 2 tensor.

If the TRF has the same constant mean in each component, 〈Ti (x)〉 =
〈Tj (x)〉 = μ, then

2γij (x,y) =
〈
[Ti (x) − Tj (y)]2

〉
.

In the case of a statistically homogeneous TRF,

2γij (x,y) = 2γij (x− y) .

Henceforth, we can also work with γij (z).
If, in addition, the TRF is statistically isotropic, for any orthogonal transfor-

mation g of the vector RF T ,

〈Ti (gx)〉 = 〈gTi (x)〉 = g 〈Ti (x)〉
2γij (gz) = 2gγij (z) g.
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Properties:

1. The variogram is non-negative for any i, j

2γij (x,y) ≥ 0;

2. The variogram equals zero for any i

2γii (x,x) := Var (Ti (x) − Tj (x)) = 0;

3. For any fixed index i = j (e.g. i = j = 1), a function γ11 (xk,xl) is a
semivariogram iff it is conditionally non-negative definite, i.e. for all weights

w1, . . . , wN subject to
N∑
k=1

wk = 0 and any locations x1, . . . ,xN there holds:

N∑
k=1

N∑
l=1

wkγ11 (xk,xl)wl ≤ 0.

4. If the covariance of the stationary vector RF exists, it is related to the
variogram Cij (z) by

2γij (z) = Cij (x) + Cij (y) − 2Cij (x,y) .

4.12 Bibliographical Remarks

The random field model of fractal planetary rings has been published in
Malyarenko & Ostoja-Starzewski (2017a).

There are at least three different (but most probably equivalent) approaches
to the construction of random sections of vector bundles, the first by Geller &
Marinucci (2010), the second by Malyarenko (2011) and Malyarenko (2013) and
the third by Baldi & Rossi (2014).
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conjugate representation, 69
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